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ABSTRACT. The geometric concept of the Lie derivative is introduced as the natural way of
quantifying the intrinsic robustness of a hypothesis space. Prior and posterior probability measures
are interpreted as differential forms defined invariantly on the hypothesis space. Rates of change
with respect to local deformations of the model are computed by means of Lie derivatives of tensors
defined on the model (like the Information metric, prior, posterior, etc.). In this way a field theory of
inference is obtained. The class of deformations preserving the state of total ignorance is introduced
and characterized by a partial differential equation. For location models this equation is the familiar
V -€=0. A simple condition for the robustness of prior (or posterior) distributions is found: There
is robustness when the deformation is along level surfaces of the prior (or posterior) density. These
results are then applied to the class of entropic priors. It is shown that the hyper parameter
controls the sensitivity with respect to local deformations. It is also shown that entropic priors are
only sensitive to deformations that change the intrinsic form of the model around the initial guess.

1. Introduction

The Robustness, of a statistical procedure, is commonly defined as the stability with respect
to small changes in the assumptions. This notion has immediate intuitive appeal and it has
even been equated to the Holy Grail of Statistics (see [5]).

There is general agreement about the desirability of a consistent theory of Statistical
Robustness (Bayesian and non-Bayesian) and the large number of articles and books ded-
icated to the subject testify it. The technical definition of robustness is still controversial,
however. For a serious criticism to the definitions of Hampel [3, p. 1980] and Huber [4, p.
10] see [6, p. 17].

In this paper, the geometric concept of the Lie derivative is introduced as a technical
tool for quantifying robustness. The great arsenal of modern geometry tools provide a
flexible, rigorous, and powerful framework for developing Statistical inference in general
and Bayesian robustness in particular.

The geometrization of statistics is possible in part due to the fact that statistical models
have a natural manifold structure. Fisher information endows the models with a Rieman-
nian metric and the Kullback number (entropy) generates this and many other natural
geodesic metrics on the model (see [1] and [7]).

The main idea is to exploit the rich geometric structure available in the hypothesis
space for the quantification of robustness. Once differential geometry is permitted to be the
operational framework, a number of consequences for robustness are straight forward and
inevitable. This paper concentrates on the quantification of the robustness of probability
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distributions defined on the model. The same technique can be used for quantifying the
stability of any tensorial quantity defined on the space.

In this approach, there are important differences with traditional methods. First, ev-
erything is intrinsic to the model. There is no need for postulating super models, nonpara-
metric neighborhoods, or anything outside the given hypothesis space. The model is an
enclosed universe that is assumed to include all the relevant probability measures for the
observed data. The possibility of encoding deformations of the model without reference to
an outside, is a remarkable achievement of modern geometry. Second, n does not have to go
to infinity for the methods to make sense. In fact they even make sense in the absence of all
data. We can quantify the sensitivity of a prior distribution with respect to deformations
of the model independently of the observations.

The paper is divided into four sections. In section one we introduce the notation and
provide a summary of the main definitions and results from geometry that will be needed
later. In section two we introduce probability distributions over the parameter space as
differential forms defined on the model and their Lie derivatives are computed by using the
methods of section one. We also compute explicitly the sensitivity of the class of entropic
priors with respect to deformations of the model. Finally, in section three, we workout
the example of inference in the one dimensional gaussian model with entropic priors. We
conclude in section four with some comments on the possible future developments of these
methods.

2. Local Deformations, Lie Derivatives of Tensors and Volume Elements

We collect here some classical results from the geometry of vector fields on manifolds. The
material in this section can be found on most books on modern geometry. We follow the
presentation and notation of [2, chap. 23].

Regular (finite dimensional) parametric statistical models will be denoted by P = { Py :
§ € ©}. They are Riemannian manifolds. The parameterization ® C R* plays the role of a
coordinate system. The tangent space at P € P is modeled by the linear space generated
by the partial derivatives (w.r. to ) of the log-likelihoods. In this way the tangent space
at P is a subspace of L?(P) and it inherits the inner product from it. It turns out that the
Riemannian metric on the tangent space at Py, ¢;;(6), coincides with the Fisher information
matrix at 6§, see [1] and [7] for detailed definitions.

A vector field £ on the manifold P is a mapping that assigns to each P € P a tangent
vector at P. For a pictorial representation think of the model as a k-dimensional (curved)
surface and the vector field as the velocity field of a fluid moving on the surface. If the
field € is smooth (as a map between manifolds) the theory of ordinary differential equations
warranties the existence and uniqueness of the following associated autonomous system of
differential equations:

dy’ i (gl k _

o ¢ (9 (t),...,H(t)), i=1,...k
| | (1)
0'lt=t, = 65

where 6 and £ denote the components of Py and ¢ in the coordinate system O and 6 is
the initial condition. The solution to this system is known as the integral curve of £ passing
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through Py,. We denote it by Fi(6y) = 6(¢). For a given ¢ the map, F} : 6y — 6(1), defined in
a neighborhood of the point 6y, represents the new position after time ¢ of a particle of fluid
which is initially at 8. The theory of ordinary differential equations assures that for ¢ small
enough the maps F; are diffcomorphisms (i.e. one to one and with continuous differential
both ways). More precisely they form a local one parameter group of diffeomorphisms with
group operation Fy o Fy = Fiyq, inverse Ft_1 = F_; and identity Fy. Each transformation
F; defines (at least locally) a change of coordinates from 6 to 8(%) i.e. a local re-labeling
of the elements of P. In this way if 7" is a quantity defined in terms of the labels 6(t) (but
providing intrinsic information about the points P € P) it will have an expression (£}1')
in terms of the labels 6y, satisfying the rules of transformation for tensors. We have the
following:

Definition 1 The Lie derivalive of a tensor T along a vector field £ is the lensor LT
given by

LT = |5 (D) 2

l =0

Again, in visual terms the Lie derivative of T along £ gives the rate of change of T as it

is seen when moving with the fluid. Or equivalently, standing at fy we see the components

of T' change due to the (time dependent) deformation of the space given by F; and the Lie

derivative is just the rate of change (with respect to time) of what we see. By applying

the rules of transformations for tensors and using the smoothness of the Fi’s (by Taylor’s

theorem Fy(6y) = 0y + t£(6p) + o(t)), we can find the components of the Lie derivative of

the tensor T;j;qp . They are given by:

o OT?&"'Z.-P o 3£k o afk
21 ...2 _ s J1--20 21 ...2 21...2
LTy 70 = ¢ T ST 900 o T 9074
lig...i,, OE1 igoiy 11 OE
=175 a0l T s EY IR (3)

where here, as in the rest of the paper, the standard implicit summation over repeated
indices is assumed. As special cases of this formula we have:

I). Scalar field. T'= f

_ _ 0
Lef=¢-vi=¢ (1
1I). Vector field. T' = nt , .
. ; o' OE
T Y o B Y |

where [£, 7] denotes the commutator between the vector fields.

III). Covector field. T =T; = 2L

267
aT; Lk
(LeT); = & oat + Thops
= d(L¢f); = Le(df); (6)

i.e. Lie derivatives commute with differentials.
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1V). Bilinear form. T' = g;;

sagl ()‘Ek ()‘Ek
Legi; =€ 895] + gkjW ‘|‘!]ik% = Uy (7)

This is known as the strain tensor.

V). Volume element.

=T, = lg| €, ..,
= Jlgldo A ... A ab
= +¢/|g|d8' A ... A dEF if no two indices are equal. (8)
Where ¢, ;, is the Levi-Civila tensor defined as 41, —1,0 depending on the indices

forming an even, odd or no permutation of the first k integers. We denote by |g| the
absolute value of the determinant of the metric tensor g;;(6).

The volume element plays a central role in Bayesian inference. Geometrically, it
gives the surface area of a small patch on the k-dimensional surface. For this reason
is the analogous of the lebesgue (uniform) measure on flat space. It behaves like
a totally anti symmetric (skew-symmetric) tensor under coordinate transformations
preserving a given orientation of the space. Volume elements can then be interpreted
as differential forms of order k and as total ignorance priors in statistics. After some
simplifications formula 3 gives,

1 .
L¢ (\/|g| o' A ... /\dek) = 59“” (Legim) \/|g| d6* A ... A d6* (9)

Where g™ denotes the inverse of the (Fisher information) matrix, g;,,. Expressions
involving g are always functions of  but this will be kept implicit to simplify the
notation. Notice that the effect of taking the Lie derivative of the volume element is
to multiply it by one half the trace of the strain tensor defined in 7.

VI). Leibniz’ rule. If 7" and R are arbitrary tensors and 7'® R denotes the tensor product
between them, then,

Le(T ® R) = (LeT) @ R+ T @ (LeR) (10)

3. Robustness of Probability Distributions Defined on the Parameter Space

Probability measures defined on © (e.g. priors and posteriors) can be seen as providing
alternative ways of measuring the surface area of patches on the manifold. The parameter-
ization © is only a convenient artifact to be able to write the formulas explicitly without
having to perform the integration directly over the functional space of probability measures.
But the parameterization is arbitrary and therefore it must be immaterial. The formulas
should show this invariance under reparameterization up front.

From this point of view, it is necessary to leave tradition and move from the usual
interpretation of probability densities as functions with transformation rules governed by
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the so called change of variables theorem to scalar fields with no transformation rules what-
soever. Traditionally, density functions are integrated with integrals of the second kind
which are just multiple integrals to be handled independently of any metric which may be
defined on the space. But if we move to densities as scalar fields, then they have to be
integrated with integrals of the first kind with respect to the volume element in the desired
parameterization. A probability measure on @ will then be written as a differential form,

w(0)\/lg| d6* A ... A d6* (11)

where 7(6) is a scalar field. Notice that 7(6) is just the Radon-Nikodym derivative of the
probability measure defined by 11 with respect to the volume element measure. In other
words the density (as a scalar field) is given relative to total ignorance. Notice also that 11
is wonderfully invariant. If what it was called § we now call " all we need to do to 11 is to
prime the 8’s and we get the formula in the new coordinate system.

1.2
An example may help to fix the ideas. For example, %e_ 2" is the probability density
scalar field of the standard bivariate gaussian on the euclidean plane parameterized with

10,2 2
polar coordinates r,#. The same density in cartesian coordinates is just %6_2(30 Ty )
i.e. the point on the euclidean plane with the two labels (z,y) and [r,f] has exactly the
same density relative to (euclidean) ignorance since r? = z? + y2.

Noteworthy, this almost trivial change in point of view, helps to clarify an old puzzle
of inference: How come that complete ignorance aboul a value x € [0,1] is not complete
ignorance about y = x? € [0,1]%. In other words, the change of variable theorem transforms
the uniform density of z into the non uniform density %y‘l/Q for y. This is regarded as
paradoxical, for, it is claimed, indifference about the number z should produce indifference
about the number y = z?. When considering densities as scalar fields there is no puzzle.
The puzzle arises from the insistence, of the change of variables theorem, to keep the
underlying measure to be the same (Lebesgue measure on [0, 1] in this case) for z and for y.
But, z and y = 2? are just two different numerical labels for events (perhaps measurements
of the same thing but in two systems of units) so whatever it was labeled %, say, with z is
relabeled as % by y. Therefore, the labels 2 = 0.5 and y = 0.25 must have the same chance
of occurrence. In fact, they do. But the change of variables theorem hides it by shifting
the Jacobian from the volume element, where it belongs, to the density, where it does not
belong. Our formula 11, assigns constant density to the numbers in [0, 1] in all coordinate
systems, linear or non linear transformations of x.

Formula 11 is composed as the product of two invariants. The scalar field density and
the volume element. Remember that the volume element is invariant under all reparameter-
izations preserving orientation. When changing coordinate systems, the two parts remain
the same.

3.1. The Robustness of Total Ignorance

The rate of change of the total ignorance prior along a deformation of the model given by
a vector field £ is given by 9. Replacing 7 into 9 and simplifying, we can write

1 ..
L¢ <«,/|g| Ao A .. A dek) = (59”V§]ij + V) € <\/|g| do* A .. A dek) (12)
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Thus, a local deformation of the hypothesis space, does not change the state of total igno-
rance if it is along a vector field £ solving the partial differential equation:

(%gMVgU4-V)-§::0 (13)

Therefore, if the metric tensor is independent of # (e.g. for location models), equation 13
reduces to the familiar:

V£=0 (14)

Equation 14, and the more general equation, 13, encode the idea of conservation of igno-
rance. Deformations of the model that satisfy them, are precisely those that do not create
nor destroy information.

3.2. Robustness of Priors and Posteriors

To compute the Lie derivative of an arbitrary distribution over the parameter space we
apply Leibniz’ rule 10, to the differential form 11,

Le¢ <n,ug|d01A.../\d0k) TLg (,ug|d01A.../\d0k)-+ <\M9|d01A.../\d0k) Lem

1 .
= <—glnggim+Lglog7r) 7n/|g|al01 A AdE" (15)

2

Where we have used the fact that tensor multiplication by a scalar field is just regular
multiplication and equations 5, and 9. Thus, robustness is obtained when 7,£ and the
metric g;,, are connected through the partial differential equation:

1 .
Lelogm = —5g™ Legin (16)

This is again an equation expressing conservation of information. There is invariance along £
when the gradient of the log-likelihood (of the prior or posterior 7) projected onto £ exactly
eliminates the sources of information created by the deformation. But, if the deformation
& does not artificially create information, i.e. if it preserves the state of complete ignorance
then, by 9 and 4, the general equation 16 simplifies to,

£-Vr=0 (17)

This is not surprising. Since the gradient, V, is always orthogonal to the level surfaces
{6 : 7(6) = ¢} we can rewrite 17 as,

Theorem 1 Let £ be an ignorance preserving vector field. Then, a probability distribution
on O with scalar field density w, is robust with respect to deformations along £ iff © puts
constant probability mass on the integral curves of €.

In other words, prior (or posterior) probabilities do not change, only when the defor-
mations remain inside the level surfaces of the density.
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3.3. Robustness of Entropic Priors

The name and the derivation of Entropic Priors for the manifold of discrete distributions
are due to Skilling (see [11]). The generalization to arbitrary regular parametric models
appears in the same volume in [7], see also [9], [8], [10].

Entropic priors are defined by their scalar field density. In the coordinate system of the
0’s they are given by

(6) = %e—aI(H 16p) (18)

where, I(6 : 6p) is the Kullback number between the distributions labeled by # and a given
initial value fy. The parameter o > 0 has to be large enough, so that the constant of
integration, ¢, is finite. Equation 18 has an easy interpretation: The chance of § decreases
exponentially fast with the Kullback distance from 6y and the parameter a controls the
sensitivity to changes in the distance. Since the density is given as a scalar field, this
interpretation holds in all coordinate systems i.e. for all parameterizations of the model.
To compute the sensitivity of entropic priors, with respect to deformations of the model,
we need only to replace 18 into 15. If we denote by II the entropic prior probability measure,
we have:
ddL_lgIH = %gnggim —af -VI(0:6y) (19)
where the left hand side denotes the Radon-Nikodym derivative of the (signed) measure
LIl with respect to II. If £ preserves ignorance, the first term of the sum in 19 is zero and

ALl
ﬁ = —af-VI(8:6p). (20)

Equation 20 contains a lot of information about the nature of entropic priors. Firstly,
notice that the parameter a controls the size of the derivative. In other words, the smaller
a is, the more robust the inferences are. Jeffreys priors appear as tautological winners:
Ignorance priors are robust with respect to deformations preserving ignorance. Besides this
tautological robustness, obtained when a = 0, we have robustness when £ is orthogonal to
VI. In other words, when the integral curves of £ are located on the surface of entropy
spheres centered at 0y i.e. {6 :1(8:6y) = const.}. This justifies the following:

Definition 2 A vector field defined on the statistical model is said to be information pre-
serving at 8y if it does nol change ignorance and has integral curves contained in the level
surfaces of 1(0 : 6p).

This definition makes true the following:

Theorem 2 Fniropic priors are robust with respect to deformations preserving information
at the initial guess, Oy

It is well known that the Kullback number generates the Riemannian metric (see [7] or
[9]). In fact, a simple Taylor expansion of the Kullback number produces:
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§-VI(0:00) = (£0—"bo)s+0(l0—0o|)
£'07gi;(8) + o (|6 — o)) (21)

where v = 8 — fp is in fact a tangent vector at § when 6y approaches 6. From here, we
obtain the following

Theorem 3 FEntropic Priors are robust with respect to local isometries at 0y

By local isometries at 8y we mean deformations that close to 6y do not change the metric.
These deformations just send points in spherical orbits around #y. The previous theorem
shows that entropic priors, as opposed to other classes of priors, are very compatible with
the intrinsic Riemannian geometry of the hypothesis space. Entropic priors are sensitive
only to deformations that change the intrinsic form of the model around 6y.

4. Example: The Gaussians

The main purpose of this section is to illustrate some of the formulas introduced in this paper
with a concrete example. An in depth analysis of the robustness of gaussians, however, is
beyond the scope of the present article.

The gaussian distributions form a two dimensional Riemannian space. The metric tensor
(Fisher information matrix) in the coordinate system 6 = (8',6?) = (p,0) is diagonal with
g11 = 1/027 922 = 2/02- Thus,

. 2 o2 —4
7 2
9V =0 (07 —) + 5 <07 —03) (22)

o3

The vector fields £ = (£1,£?) that preserve ignorance are given, from 13 and 22, by

o¢t o 2,
= 4 s T2 23
TR e (23)
This can be easily shown to have the general solution:
2 gy 0
- (A i S i 24
e (no)+ 2v-50.50) (24)

where h is an arbitrary differentiable function of o, and % is an arbitrary differentiable
function of p and o, with continuous second order partial derivatives.

4.1. Entropic Prior on the Gaussians

Consider the entropic prior model on the manifold of gaussians with initial guess 6, = (0, 1)
i.e. the standard normal distribution. Straight forward computations show 18 to be,

1
T(p,0) = @O‘ e 2ae 20 (25)

Equation 25 is the scalar field density relative to the volume element:

o % du A do (26)
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The symbolic manipulator MAPLE, shows that, for a > 1
1
(@) = 200/270) /rq=e/?D <§(a - 1)) (27)

The integral of 25 with respect to 26 diverges for a < 1. I believe this to be the reason
of why Jeffreys, and many others after him, thinks that the volume element 26 (i.e. a = 0)
is too uninformative. The prior distribution obtained at the first divergent value of ¢, when
a = 1, produces posterior inferences remarkably similar to the popular conjugate prior for
this case. Even for two observations. This suggests to extend the definition of uninformative
prior to include all the entropic priors with divergent ¢. The boundary value of a (in this
case a = 1) can be used to approximate the frequentist methods.

The level curves of 25, are closed curves on the upper half plane (i, o) with equations,

2 2
I o
—+ — —alogog =k 28
2a + 2a & (28)
where k depends on a. Computer experiments show these curves to be similar to ellipses
centered about (0,1 — €(a)) with € tending to zero as « increases. Therefore, there is
robustness when the velocity vectors 24 are tangent to the level curves, 28. This happens
when,

;%—UG—U—Q\IJ—I—O‘h(O‘)IO (29)

(02 B a2) 10V ov

Preliminary analysis indicates that equation 29 imposes a heavy restriction on the deforma-
tions for which there is robustness. The group of isometries of the gaussians, together with
theorem 3, could be used to find the desired deformations around 8y = (0,1). It is possible
to show, that the group of direct isometries of the gaussians, is that of the Lobachevskian
plane. This group, is known to be isomorphic to the orthochronous connected component
of the identity of the Lorentz group for three dimensional space-time (i.e. a space with
metric: 22 + y* — 2, see [9]).

5. Conclusions

In retrospect, this paper should be consider a first attempt to demonstrate that it makes
sense to use Lie derivatives for quantifying bayesian robustness. No doubt, the geometriza-
tion of Inference provides a powerful language for asking questions about statistical proce-
dures. As usual, geometry brings the paraphernalia of visual imagery that embodies the
objects of study and allows to see the theorems. Looking ahead, to the (immediate) future,
we can anticipate that many of the successful applications of modern geometry to physics
might be reproduced, for the theory of Inference. Stokes theorem will begin to play a cen-
tral role in bayesian robustness, for the very simple reason that the Lie derivatives of priors
and posteriors are again differential forms ready to be integrated over patches. There is
also room for connections and gauges, square roots of laplacians, Lie algebras and index
theorems. We need to find the people with the guts to do it.
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