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Abstract. The Geometric Theory of Ignorance produces posterior distributions from priors and
likelihoods without invoking Bayes Theorem at all. The standard bayesian posteriors minimize the
ignorance action with parametersδ = ν = 0 when the trutht is replaced by the empirical distribution
of n independent observations. Different values for the parameters produce new ways for processing
the data obtaining posterior distributions that are maximally honest with respect to the explicitly
available information and showing remarkable finite sample and asymptotic properties.

INTRODUCTION

There is no data in a true theoretical vacuum. By this I mean that it is impossible to have
completely atheoretical data. For example a pure number, likex = 2.7 say, is not data
unless it is understood as a logical proposition in a given domain of discourse e.g.the
result of a well defined experiment produced x= 2.7. Thus, it isTRUE(or it is FALSE)
that x = 2.7. Data is a logical proposition in a theoretical background. A theory is an
explanation for the data. In a concrete and pragmatic way, a theory is an algorithm for
compressing data. A theory is a code. A notion of likelihood is naturally identified with
a notion of code length (e.g.− logp(x) being the standard length of the code for the
symbolx occurring with probabilityp(x)). In this way a theory (i.e. a code) is identified
with a probability distribution for the data. Every meaningful notion of expected code
length defines a one-to-one correspondance between codes and probability distributions
for the data. Thus, the best theory gives the shortest expected length for an encoded
message. In other words in this approach maximum likelihood is best by definition.
But of course this is tautological. It depends on what is likelihood and what is best, or
equivalently, it depends on what we accept as expected code length. To realize that there
is plenty of room for alternative notions of code length besides the standard− logp(x)
(and thus likelihood) consider an information source with infinite Shannon entropy. For
example, the distribution over the positive integersk = 1,2, . . . with probabilities given
by,

p(k) =
1

log2(k+1)
− 1

log2(k+2)
.

To find a “good” code for this distribution we either have to change the standard notion
of code length or, equivalently, the standard notion of likelihood producing alternative,
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but still meaningful, notions of entropy. Several questions immediately pop up: How
much freedom is there about these choices of entropy, code length, likelihood?. How
can we do inference with these more general notions?. When two or more choices are
available how should we choose among them?. Are there advantages in using the more
general notions in cases where the standard choices are still applicable?.

I show in this paper that the geometric theory of ignorance provides natural answers
for some of these questions.

QUANTIFYING IGNORANCE WITH INFORMATION
GEOMETRY

The basic space is the space of distributions for the combined (DATA,THEORY) vector
(x, p). A statistical model is a set of theories,M = {p}, i.e. a set of probability distri-
butions for the data. A prior is a probability distributionπ = π(p) over the modelM.
We denote byP the set of all possible probability distributions for the datax and by
P̃ and M̃ = {p̃} the corresponding cones of unnormalized distributions, i.e. ˜p = cp
for somec > 0. We often ommit the tildes and simply denote byp an unnormalized
probability distribution. For 0< δ < 1 we define the vector spaceL1/δ

of δ -powers of

distributions containing all objects of the formpδ f wherep is a probability distribution
and f ∈ L1/δ

(p) i.e., ‖pδ f‖δ =
∫
| f |1/δ p < ∞. With this norm, the obvious definition

of addition and multiplication by scalar, and the identification of equivalent objects,
L1/δ

becomes a Banach space. Notice thatpδ ≡ qδ f iff f 1/δ = p/q is the density ofp
with respect toq. We also define theδ -coordinates ofp by the vector inL1/δ

given by

l
δ
(p) = pδ /δ . Also, letl0(p) = l(p) = logp. Forδ ∈ (0,1) we define theδ -information

deviation for (unnormalized) probability distributionsp andq by the finite non negative
number,

I
δ
(p : q) =

1
δ (1−δ )

∫
[δ p+(1−δ )q− pδ q1−δ ] = I1−δ

(q : p)

For δ ∈ {0,1}, I
δ

is taken as the corresponding limit obtaining,

I1(p : q) =
∫ (

q− p+ plog
p
q

)
= I0(q : p)

coinciding with the Kullback number when
∫

p =
∫

q. The arithmetic meanδ p+(1−
δ )q is never smaller than the geometric meanpδ q1−δ and they are both equal only when
p= q. Hence,I

δ
(p : q)≥ 0 with equality iff p≡ q. The spaceL1/(1−δ ) is the topological

dual of the spaceL1/δ
and the only Hilbert space is the self-dualL2 associated to

δ = 1/2. This is the space of wave functions in quantum mechanics when the field
of scalars is the complex plane. By using theδ -coordinates we can always regard the
statistical modelM as isometrically embedded in the Banach spaceL1/δ

. All the δ -
concepts, such as,δ -geodesic,δ -flat, δ -convex, etc are attributed toM when theδ -
coordinates form a straight line, a flat space, a convex set, etc in the vector spaceL1/δ

.
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In particular, Fisher information is the metric induced onM by L2. We say thatM is
regular whenM forms a Riemannian manifold with Fisher information as the metric.
The coneP̃ of unnormalized probability distributions isδ -flat for all δ .

The Actions of Ignorance

Let π andη be priors onM = {p}. Let t be a probability distribution for the datax
and, letβ > 0,0≤ δ ≤ 1,0≤ ν < 1. Define the positive scalar,

A = β < I
δ
(p : t) >η +I1−ν

(η : π)

where we denote by< f >η=
∫

f η which is the expectation off w.r.t. η whenη is
normalized. We callA an action of Ignorance since it defines a risk functional on the
space of joint distributions of(x, p) where the datax is independent of the theoryp.
i.e., it ranks theignorantdistributions of the factorized formtη = t(x)η(p). To see this
consider the following two facts:

A = β I
δ
(pη : tη)+ I1−ν

(η : π) (1)

where we denote bypη = p(x)η(p) the joint distribution on (DATA,THEORY) that
picks p according toη and then picksx according top. And,

I1(tη : pπ) =< I0(p : t) >η +ct I1(η : π)+(cp−ct)(cπ −cη) (2)

wherecf =
∫

f .
Fact (1) shows that for a givent, theη that minimizesA is most ignorant in the sense

that makesp(x)η(p) close tot(x)η(p) andη close toπ. WhenM has finite information
volume (i.e. finite volume inL2) then a simple choice forπ is the uniform distribtion over
M. Thus, in this case the bestη is a compromise between makingx andp independent
(i.e. concentrating the mass about theδ -projection oft on M) and spreading the mass
overM. Fact (2) shows that whenδ = ν = 0 andcη = cπ minimizing A is equivalent
to makingtη as close as possible topπ.

NEW POSTERIORS

The joint minimization ofA over unnormalized distributions(t,η) is a trivial exercise
in the calculus of variations. The optimality conditions are:

η(p) = [1+βν I
δ
(p : t)]−

1
ν π(p) (3)

tδ (x) =
∫

M
pδ (x)η(p) (4)

These two coupled functional equations could be solved, in principle, by iterative sub-
stitution starting from,
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η0(p) = π(p) (5)

tδ
0 (x) =

∫
M

pδ (x)π(p) (6)

There is an error decomposition formula available. For anyt we have,

< I
δ
(p : t) >π=< I

δ
(p : t0) >π +I

δ
(t0 : t) (7)

δ -likelihood

Equation (4) gives theδ -coordinates of the optimalt as theη-average of theδ -
coordinates ofp. This has the form of the predictive distribution ofx but with p replaced
with pδ . Thus, given a samplexn = (x1, . . . ,xn) of n independent observations we define
theδ -likelihood of p by,

Lδ
xn(p) = pδ (x1)pδ (x2) · · · p

δ (xn) (8)

Direct posteriors

For a givent the most ignorant prior is given by (3). When a samplexn is available
we can estimatet with either the empirical distribution̂tn or a predictive distribution
obtaining a direct (unnormalized) posterior,

π(p|xn) = [1+βν I
δ
(p : t̂n)]−1/ν

π(p) (9)

Asymptotic consistency is obtained when we letβ → ∞ as n → ∞. In general these
posteriors do not agree with bayes theorem unless we call likelihood the posterior
density w.r.t. the priorπ. Therefore, we call(δ ,ν ,β )-Likelihood the ratioπ(p|xn)/π(p)
obtained from (9). We also call ˆp(1−δ )

n the p ∈ M (when it exists) that maximizes this
likelihood. Thus,

p̂(1−δ )
n = argmin

p∈M
I
δ
(p : t̂n)

= argmax
p∈M

n

∑
i=1

pδ (xi) (10)

standard maximum likelihood is the special caseδ = 0. In fact,(δ = 0,ν = 0,β = αn)-
Likelihood is the same asα-likelihood as we now show.
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EXAMPLES AND SPECIAL CASES

The special caseδ = ν = 0 with β = αn and 0< α ≤ 1 is particularly interesting. The
generalized posterior (9) becomes,

π
α(p|xn) = e−α ∑n

i=1 log(1/p(xi))π(p)
= pα(x1) · · · p

α(xn)π(p) (11)

which recovers bayes theorem withδ -likelihood (8) whenδ = α. Standard inference
is the caseα = 1. Further more this shows thatβ and δ are related since the direct
posterior withδ = 0 andβ = αn coincides with theδ -posterior withδ = α. Thus,
it is natural to consider the consistency of this posterior in terms ofIα information
separation.

Example: A gaussian mean. For givenσ > 0 let M = {N(θ ,σ2) : θ ∈ R}. For any
continuous priorπ the most honestδ -predictor hasδ -coordinates in thecenterof M
defined by (6),

tδ
π (x) =

∫
exp

{
−δ

2σ2(x−θ)2
}

π(θ)dθ (12)

Notice that the normalizedδ -coordinates define a diffusion in a fictitious timeτ =
σ2/(2δ ) inversely proportional toδ . This suggests that, for the gaussian location model
ignorance increases asδ → 0. The normalized delta coordinates satisfy the heat equation
(∂τ +4)π(τ,x) = 0 where4 = −∇2 is the geometer’s laplacian. On the other hand
for a givent the best prior is given by (3). Thus if we guesst with a point inM, say
t = N(θ0,σ

2) then, forδ ≈ 0 (i.e. after a long ficticious timeτ) we obtain,

η(θ |θ0) =

[
1+βν

(θ −θ0)
2

2σ2

]−1/ν

(13)

This is a student-t distribution with(2/ν −1) degrees of freedom centered atθ0 with

scale
√

2
β (2−3ν)σ . This suggests that ignorance increases asν → 1. In the limit of

maximum ignorance it becomes a Lorentzian.
When ν = 0 the prior (from (3)) isη(θ |θ0) ≡ N(θ0,σ

2/β ). Thus, (θ − θ0) ∼
N(0,σ2τ) where we defineτ = 1/β interpreted as the lapse of fictitious time between
initial locationθ0 and final locationθ . This isnot brownian motion unless we promote
the increments(θ −θ0) to the increments of an stochastic process indexed byτ > 0, i.e.
unless we assume time homogeneity and independence for non overlapping time lapses
for an arbitrary number of such increments. The data space is now the infinite dimen-
sional manifold of trajectoriesθ(τ) and the statistical modelM contains all the Wiener
processes indexed by driftsθ0(t), i.e.θ(t + τ) = θ0(t)+σWτ where{Wτ : τ > 0} is the
standard Wiener process.
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When againπ = N(θ0,σ
2/β ), (12) simplifies totπ = N(θ0,σ

2(1+ 1
β
)) which is

outside ofM and the same for all values ofδ . It is often the case that the manifold
of predictive distributions for different priorsπ provide a useful enlargement̂M of
the original modelM. In general whent is guessed by onep0 ∈ M the extendedM̂
is labeled byM itself andβ > 0. We may takeβ = β (p0) makingM andM̂ of the same
dimension, or the other way aroundp0 = p0(β ) labelingM̂ by paths inM i.e. by the set
{(β , p0(β )) : β > 0, p0(β ) ∈M}.

The value ofI
δ

giving the separation between the (unnormalized)N(θ ,σ2) and the
(unnormalized)N(θ0,σ

2/β ) is given by,

I
δ

=
√

2πσ

δ (1−δ )

[
δ +

(1−δ )√
β

− 1√
δ +(1−δ )β

exp

{
−δ (1−δ )β (θ −θ0)

2

2σ2(δ +(1−δ )β )

}]
(14)

thus, theδ -projection oftπ onto the modelM is achieved when the exponent is the
largest posible i.e. atθ = θ0. Hence, for the normal location modelM with any normal
π the best predictor inM is whenθ is the mean of the priorπ and this is the case for all
δ . A robust and consistent direct posterior is given by (9) withβ = αn by,

π(θ |xn) =
[
1+αnν

(θ − x̄n)2

2σ2

]−1/ν

(15)

This is not asymptotically gaussian. It remains a student-t with(2/ν − 1) degrees of
freedom for alln. It has mean equal to the sample mean ¯xn providedν < 1 and variance
given by,

σ
2
n =

2σ2

α(2−3ν)n
(16)

providedν < 2/3.

THE GROUND STATE OF MAXIMUM IGNORANCE

The minimum possible value ofA is obtained for a givent whenη is (3). The actual
numerical value depends on whether we use (3) or its normalized expression but the
qualitative conclusion will be the same for both cases. Let us start with the unnormalized
case. LetZν be the integral overM of η . We have,

ν(1−ν)I1−ν
(η : π) = (1−ν)Zν +ν−Zν −βν < I

δ
>η

= ν
(
1−Zν −β < I

δ
>η

)
Hence,
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A = β < I
δ

>η +I1−ν
(η : π)

=
1

1−ν

[
1−Zν −βν < I

δ
>η

]
For the two extreme values ofν the maximum ignorance becomes,

lim
ν→0

A = 1−Z0 (17)

lim
ν→1

A = ∞. (18)

This shows that forν ≈ 0 thet that maximizes ignorance must maximize the evidence
Zν . Equation (18) shows that the caseν = 1 should either be excluded or(1− ν)A
instead ofA be used.

Let us now consider the normalized case:η∗ = η/Z. It is possible to show that for a
givent, thisη∗ minimizes the actionA ∗ with β ∗ = βZν . We have,

ν(1−ν)I1−ν
(η∗ : π) = 1−Zν −βνZν < I

δ
>

η∗

thus,

A ∗ =
1

ν(1−ν)

[
1−Zν −ν

2
βZν < I

δ
>

η∗

]
(19)

and,

lim
ν→0

A ∗ = − logZ (20)

lim
ν→1

A ∗ = ∞. (21)

ZHANG’S THEOREM

In [1, Theorem 4.1] Tong Zhang proved the following remarkable result about the
asymptotic performance of the normalized directα-posteriors introduced in (11). We
use the notation,

π
α
n (p|xn) =

pα(x1) · · · pα(xn)πn(p)∫
Mn

pα(x1) · · · pα(xn)πn(p)

Theorem 1 (Zhang 2003)For any sequencesπn of priors on Mn and, εn of positive
numbers converging to 0, if

sup
n

−1
nεn

log
∫

I0(p:t)≤εn

πn(p) < ∞ (22)
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then for sn → ∞ and0 < α < 1 we have,∫
Iα (p:t)≥εnsn

π
α
n (p|xn)→ 0 (23)

in t-probability as n→ ∞.

Translation: The directα-posteriorπα
n concentrates in anIα ball of radiusεn centered

at t at rateOp(εn) provided only that the priorsπn put massO(e−cnεn) on theI0 ball of
radiusεn centered att. In other words, the only requirement for consistency is a local
condition about the thinness of the priorsπn aroundt. The directα-posteriors are thus
robust against incorrect assignments of prior mass away fromt. This is not always true
for standard bayesian inference, (see the references in [1]) i.e. this is not true when
α = 1.

CONCLUSION

When the information source ist, the δ -information deviationI
δ
(p : t) quantifies a

redundancy (or opportunity loss), in terms of expected code length, in the code built
from p instead oft. The problem is that the information source is often a moving target
and almost never known with certainty. One way to handle the uncertainty aboutt is
to provide a probabilistic model fort, i.e., a prior probability distributionπ over P
concentrating its mass in a subsetM ⊂ P. Since there is truly no meaningful datax
without some kind of theoryp, we can only attempt to transmit(DATA,THEORY) as
a whole and we need a code for(x, p) not justx. Several current data compressors (e.g.
MP4) are based on this approach. To transmit a digital recording of a piano sonata, with
the help of some parametric modelM for the piano and the acoustics of the room, we
transmit first the values of the parameters identifyingp∈M and then use thatp to encode
the long binary vectorx. The ignorant actionsA provide all the statistical invariant ways
for measuring expected code length redundancies for transmitting(DATA,THEORY).
The (1− ν)-information deviationI1−ν

(η : π) gives the redundancy in coding the
theory with the priorη instead of the priorπ and thus,A quantifies the total prize for
transmiting the theoryp and then the datax with the help ofp. The actionsA are true
statistical invariants preserving all the symmetries of inference. These are: invariance
under choice of coordinates for(x, p), invariance under choice of dominating measures
for defining densitiesp, and invariance under sufficient reductions of the data. What
seems most appealing in the code theoretical interpretations of statistical inference is
the revelation that probability distributions, just like parameters, arenot true, but only
useful assumptions for encoding the data.

The actionsA are given in non-parametric form and the modelM does not need to be
finite dimensional or regular. Thus, the theory of inference based on the minimization of
A is extremely general with innumerable applications. Nevertheless, the bayesian fun-
damentalists are likely to reject direct posteriors or any other procedures manipulating
the observations without the direct application of bayes theorem and strict adherence
to the likelihood principle. I remind the fundamentalists that bayes theorem is a logical
necesity only if we assume we know the prior and the model but that is almost never
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the case in practice. Besides, the posteriors obtained from bayes theorem are one of the
direct posteriors, namely the special case with parametersδ = ν = 0 andβ = n.

Maximum Entropy is more general than Bayesian Inference. In fact, there is a trivial
way in which this statement is correct not just for the standard entropy (associated to
δ = 0) but for all theδ = α ∈ [0,1]. To see this computeQ∗ = argminIα(P : Q) where
P andQ are joint distributions of(x, p) and the minimization is over allQ subject to the
constraints that for allx,

∫
M Q(x, p) = δ (x−x0) i.e., subject to the constraint of observing

x0. The straight forward solution isQ∗(x, p) = δ (x−x0)P(p|x) for all values ofα. This
result was first obtained in [2] for the case ofα = 0. Hence, minimization ofIα is also
more general than bayesian inference.

ACKNOWLEDGMENTS

Part of this research was done while I was on sabbatical leave at RIKEN’s Brain Science
Institute in Japan. I am in debt to Shun-ichi Amari for making it possible.

REFERENCES

1. T. Zhang, “Learning Bounds for a Generalized Family of Bayesian Posterior Distributions”,NIPS
2003. Online athttp://stat.rutgers.edu/ ∼tzhang/papers/nips03-bayes.pdf

2. Caticha A. and Giffin A., “Updating Probabilities”, MaxEnt 2006. Online at
http://arxiv.org/abs/physics/0608185v1

Beyond Bayes June 30, 2009 9


