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Abstract. The Geometric Theory of Ignorance produces posterior distributions from priors and
likelihoods without invoking Bayes Theorem at all. The standard bayesian posteriors minimize the
ignorance action with paramete¥s= v = 0 when the truth is replaced by the empirical distribution

of nindependent observations. Different values for the parameters produce new ways for processing
the data obtaining posterior distributions that are maximally honest with respect to the explicitly
available information and showing remarkable finite sample and asymptotic properties.

INTRODUCTION

There is no data in a true theoretical vacuum. By this | mean that it is impossible to have
completely atheoretical data. For example a pure numberxlike2.7 say, is not data
unless it is understood as a logical proposition in a given domain of discourdhe.g.
result of a well defined experiment producee 2.7. Thus, it iISTRUE(or it is FALSH

thatx = 2.7. Data is a logical proposition in a theoretical background. A theory is an
explanation for the data. In a concrete and pragmatic way, a theory is an algorithm for
compressing data. A theory is a code. A notion of likelihood is naturally identified with

a notion of code length (e.g-logp(x) being the standard length of the code for the
symbolx occurring with probabilityp(x)). In this way a theory (i.e. a code) is identified

with a probability distribution for the data. Every meaningful notion of expected code
length defines a one-to-one correspondance between codes and probability distributions
for the data. Thus, the best theory gives the shortest expected length for an encoded
message. In other words in this approach maximum likelihood is best by definition.
But of course this is tautological. It depends on what is likelihood and what is best, or
equivalently, it depends on what we accept as expected code length. To realize that there
is plenty of room for alternative notions of code length besides the stardagip(X)

(and thus likelihood) consider an information source with infinite Shannon entropy. For
example, the distribution over the positive integers 1,2, ... with probabilities given

by,
11
~log,(k+1) log,(k+2)’

p(k)

To find a “good” code for this distribution we either have to change the standard notion
of code length or, equivalently, the standard notion of likelihood producing alternative,
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but still meaningful, notions of entropy. Several questions immediately pop up: How
much freedom is there about these choices of entropy, code length, likelihood?. How
can we do inference with these more general notions?. When two or more choices are
available how should we choose among them?. Are there advantages in using the more
general notions in cases where the standard choices are still applicable?.

| show in this paper that the geometric theory of ignorance provides natural answers
for some of these questions.

QUANTIFYING IGNORANCE WITH INFORMATION
GEOMETRY

The basic space is the space of distributions for the combined (DATA, THEORY) vector
(x,p). A statistical model is a set of theoried, = {p}, i.e. a set of probability distri-
butions for the data. A prior is a probability distributian= 7(p) over the modeM.

We denote by the set of all possible probability distributions for the datand by

2 andM = {P} the corresponding cones of unnormalized distributions,p.e. cp

for somec > 0. We often ommit the tildes and simply denote pyan unnormalized
probability distribution. For G< 6 < 1 we define the vector spatg/S of 5-powers of

distributions containing all objects of the forpd f wherep is a probability distribution
andf €Ly 5(p) e, Ip?£]]% = [|f|Y/%p < . With this norm, the obvious definition

of addition and multiplication by scalar, and the identification of equivalent objects,
L, 5 becomes a Banach space. Notice = o f iff /% = p/qis the density ofp

with respect tay. We also define thé-coordinates op by the vector iri_1/5 given by
l5(p) = p’ /8. Also, letly(p) =1(p) =logp. Foré € (0, 1) we define theéd-information

deviation for (unnormalized) probability distributiopsandq by the finite non negative
number,

13P20) = 575y [ 30+ (1= 8)a—pa ) =1, 5(a:p

Ford € {0,1},1 is taken as the corresponding limit obtaining,

Il(p:Q>=/(q—p+ plogg) =1p(q: p)

coinciding with the Kullback number whefip = [ g. The arithmetic meaadp+ (1 —

0)qis never smaller than the geometric mexigl 9 and they are both equal only when
p=gq. Hencels(p:q) > 0 with equality iff p=g. The SpaCQ‘Ll/(l_(;) is the topological

dual of the spachl/5 and the only Hilbert space is the self-dua) associated to

0 = 1/2. This is the space of wave functions in quantum mechanics when the field
of scalars is the complex plane. By using #heoordinates we can always regard the
statistical modeM as isometrically embedded in the Banach spla{:B. All the o-

concepts, such ag-geodesicd-flat, 5-convex, etc are attributed td when thed-
coordinates form a straight line, a flat space, a convex set, etc in the vectorl_gpg;\ce
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In particular, Fisher information is the metric induced Mnby L,. We say thaM is
regular whenM forms a Riemannian manifold with Fisher information as the metric.
The coneZ of unnormalized probability distributions &flat for all .

The Actions of Ignorance

Let 7 andn be priors onM = {p}. Lett be a probability distribution for the data
and, letf > 0,0< § < 1,0< v < 1. Define the positive scalar,

A =B <lg(p:t) >y +l_,(n:7)

where we denote by f >,= | fn which is the expectation of w.r.t. n whenn is
normalized. We calk? an action of Ignorance since it defines a risk functional on the
space of joint distributions ofx, p) where the datx is independent of the theory.

i.e., it ranks thegnorantdistributions of the factorized fortm = t(x)n(p). To see this
consider the following two facts:

o =Bls(pn :tn)+1y_,(n:7) (1)

where we denote bpn = p(X)n(p) the joint distribution on (DATA,THEORY) that
picks p according ton and then picks according top. And,

I, (tn 2 pm) =<lg(p:t) >n +Cly (N 7) + (Cp—C)(Cr —Cy) (2)
wherec; = [ f.

Fact (1) shows that for a giventhen that minimizese is most ignorant in the sense
that make9(x)n (p) close tat(x)n(p) andn close tor. WhenM has finite information
volume (i.e. finite volume ih.,) then a simple choice for is the uniform distribtion over
M. Thus, in this case the begtis a compromise between makirgnd p independent
(i.e. concentrating the mass about throjection oft on M) and spreading the mass
overM. Fact (2) shows that whe# = v = 0 andc,, = ¢, minimizing </ is equivalent
to makingtn as close as possible for.

NEW POSTERIORS

The joint minimization ofe7’ over unnormalized distribution$, n) is a trivial exercise
in the calculus of variations. The optimality conditions are:

n(p) = [1+Bvis(p:t) va(p) 3)
t(x) = /M P’ (x)1(p) (4)

These two coupled functional equations could be solved, in principle, by iterative sub-
stitution starting from,
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Mo(p) = 7(p) (5)
80 = [ pPeom(p ©)

There is an error decomposition formula available. Fortang have,
<lg(p:t) >z=<l5(p:ty) >z +l5(ty: 1) (7)

o-likelihood

Equation (4) gives thé-coordinates of the optimdl as then-average of thed-
coordinates op. This has the form of the predictive distributiomabut with p replaced
with p°. Thus, given a samphé' = (Xq,---,%n) Of nindependent observations we define
the 6-likelihood of p by,

L3(p) = p° (%) P° (%) - P° (Xn) (8)

Direct posteriors

For a givent the most ignorant prior is given by (3). When a samylés available
we can estimaté with either the empirical distributiofy, or a predictive distribution
obtaining a direct (unnormalized) posterior,

a(pX") = [1+ Bvi(p: &)Y x(p) 9)

Asymptotic consistency is obtained when we flet> o asn — c. In general these
posteriors do not agree with bayes theorem unless we call likelihood the posterior
density w.r.t. the prior. Therefore, we call§, v, B)-Likelihood the ratior(p|x") /7 (p)
obtained from (9). We also cafit* %) the p € M (when it exists) that maximizes this
likelihood. Thus,

A(1-8) _ - P
B argmini;(p:fn)
n
s
= argmax - 10
gpeM i:E p°(X;) (10)

standard maximum likelihood is the special cése 0. In fact,(6 =0,v =0, = an)-
Likelihood is the same as-likelihood as we now show.
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EXAMPLES AND SPECIAL CASES

The special casé = v =0 with 8 = anand O< o < 1 is particularly interesting. The
generalized posterior (9) becomes,

n-a(p|xn) — e_OCZinzllc’g(l/p(Xi))n(p)
P*(Xy) - P (%n) () (11)

which recovers bayes theorem widhlikelihood (8) whend = a. Standard inference
is the casex = 1. Further more this shows thftand § are related since the direct
posterior withé = 0 and 8 = an coincides with thed-posterior withé = a. Thus,

it is natural to consider the consistency of this posterior in termk,ahformation
separation.

Example: A gaussian mearfor givenc > 0 letM = {N(6,5?) : 8 € R}. For any
continuous priorr the most honesd-predictor haso-coordinates in theenterof M
defined by (6),

t3(x) = /exp{z%‘sz(x— 9)2} 7(6)d6 (12)

Notice that the normalized-coordinates define a diffusion in a fictitious time=
c2/(26) inversely proportional té. This suggests that, for the gaussian location model
ignorance increases as— 0. The normalized delta coordinates satisfy the heat equation
(9; + A)m(t,X) = 0 whereA = —[0? is the geometer’s laplacian. On the other hand
for a givent the best prior is given by (3). Thus if we gudswith a point inM, say

t =N(6, c?) then, for§ ~ O (i.e. after a long ficticious time) we obtain,

(6 — 90)2] o

n(616y) = [1+Bv (13)

202

This is a student-t distribution witf2/v — 1) degrees of freedom centered@twith

scale ﬁc. This suggests that ignorance increasesas 1. In the limit of

maximum ignorance it becomes a Lorentzian.

When v = 0 the prior (from (3)) isn(0]6,) = N(6,,62/B). Thus, (6 — 6,) ~
N(0,57) where we defing = 1/ interpreted as the lapse of fictitious time between
initial location 6, and final locatiorf. This isnot brownian motion unless we promote
the increment$6 — ;) to the increments of an stochastic process indexet: by, i.e.
unless we assume time homogeneity and independence for non overlapping time lapses
for an arbitrary number of such increments. The data space is now the infinite dimen-
sional manifold of trajectorie8(t) and the statistical mod@&l contains all the Wiener
processes indexed by drif§(t), i.e. 6(t + 1) = 6,(t) + oW, where{W; : 7 > 0} is the
standard Wiener process.
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When againt = N(6,,62/B), (12) simplifies tot; = N(8y, c2(1 + %)) which is
outside ofM and the same for all values &f It is often the case that the manifold

of predictive distributions for different prlorsc provide a useful enlargemeM of
the original modeM. In general whert is guessed by ong, € M the extendedVl

is labeled byM itself andB > 0. We may take8 = 3 (p,) makingM andM of the same
dimension, or the other way aroupg = py(8) labelingM by paths inM i.e. by the set

{(B,po(B)) : B >0,py(B) € M}

The value ofl 5 giving the separation between the (unnormalizd@®, %) and the
(unnormalizedN(6,,52/B) is given by,

| _ Vemo [5 (1-5)

8(1—8)B(6 —6y)?
= (1-6)B(6—6) H 1)

VB ¢5+1—5 {2626+<1 5)B)

thus, thed-projection oft; onto the modeM is achieved when the exponent is the
largest posible i.e. @ = 6,. Hence, for the normal location modél with any normal

7 the best predictor iM is when# is the mean of the prior and this is the case for all
0. A robust and consistent direct posterior is given by (9) \@ite an by,

— 1/v
n(0]x") = [1+ anv%} (15)

This is not asymptotically gaussian. It remains a student-t y&jtv — 1) degrees of
freedom for alln. It has mean equal to the sample meaprovidedv < 1 and variance
given by,

202

o(2—3v)n (16)

o =

providedv < 2/3.

THE GROUND STATE OF MAXIMUM IGNORANCE

The minimum possible value o#/ is obtained for a giveh whenn is (3). The actual
numerical value depends on whether we use (3) or its normalized expression but the
gualitative conclusion will be the same for both cases. Let us start with the unnormalized
case. LeZ, be the integral ove of . We have,

vil-v)l_,(n:m) = (1-Vv)Z,+Vv—-2Z,—Bv <ls>,
= v(1-Z,-B<lz3>y)

Hence,
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A = B<lg>y -+l (n:7)
1

= Ty [1-Z By <ls>y]

For the two extreme values ofthe maximum ignorance becomes,

im o/ = 1-2, (17)
V—
im o = w. (18)
v—1l

This shows that fow ~ 0 thet that maximizes ignorance must maximize the evidence
Z,. Equation (18) shows that the case= 1 should either be excluded 6t — v).o/
instead ofe7 be used.

Let us now consider the normalized cagé:= n/Z. It is possible to show that for a
givent, thisn* minimizes the action’* with 8* = Z". We have,

vl-v)l,_ ,(n"im)=1-2"-BvZ¥ <l;>

thus,
* __ 1 7V __ 27V
o ek [1 2’ —vBZ¥ <15 >,. (19)
and,
Iimoﬂ* = —logz (20)
lim .&7* = oo. (21)
v—1
ZHANG’'S THEOREM

In [1, Theorem 4.1] Tong Zhang proved the following remarkable result about the
asymptotic performance of the normalized direeposteriors introduced in (11). We
use the notation,

P%(Xq) - -+ P*(%n) tn(P)
an P (Xq) -+ P* (%) 7tn(P)

Ty (PIX") =

Theorem 1 (Zhang 2003)For any sequences, of priors on M, and, &, of positive
numbers converging to O, if

sup— log / o0 (22)
(pit) <£n
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then for $ — c0 and0 < o < 1 we have,

/ 7 (pX") — 0 (23)
lo(Pit)>€nsn
in t-probability as n— oo.

Translation: The direak-posteriorz¥ concentrates in aly, ball of radiuse, centered
att at rateOp(&n) provided only that the priors, put massO(e “™") on thel,, ball of
radiuse, centered at. In other words, the only requirement for consistency is a local
condition about the thinness of the priotgsaroundt. The directa-posteriors are thus
robust against incorrect assignments of prior mass away tirdinis is not always true
for standard bayesian inference, (see the references in [1]) i.e. this is not true when
a=1.

CONCLUSION

When the information source is the §-information deviationl;(p : t) quantifies a
redundancy (or opportunity loss), in terms of expected code length, in the code built
from pinstead ot. The problem is that the information source is often a moving target
and almost never known with certainty. One way to handle the uncertainty almut

to provide a probabilistic model fdr, i.e., a prior probability distributionr over &2
concentrating its mass in a subd&tC . Since there is truly no meaningful data
without some kind of theoryp, we can only attempt to transm(iiDATA THEORY) as

a whole and we need a code fot, p) not justx. Several current data compressors (e.g.
MP4) are based on this approach. To transmit a digital recording of a piano sonata, with
the help of some parametric moddl for the piano and the acoustics of the room, we
transmit first the values of the parameters identifyprggM and then use thatto encode

the long binary vectox. The ignorant actions” provide all the statistical invariant ways

for measuring expected code length redundancies for transm(@iAg A THEORY).

The (1 — v)-information deviationl, ,(n : ) gives the redundancy in coding the
theory with the priom instead of the priorr and thus,es quantifies the total prize for
transmiting the theorp and then the datawith the help ofp. The actionse are true
statistical invariants preserving all the symmetries of inference. These are: invariance
under choice of coordinates f@x, p), invariance under choice of dominating measures
for defining densitieg, and invariance under sufficient reductions of the data. What
seems most appealing in the code theoretical interpretations of statistical inference is
the revelation that probability distributions, just like parametersnatdrue but only
useful assumptions for encoding the data.

The actionsz are given in non-parametric form and the moklletioes not need to be
finite dimensional or regular. Thus, the theory of inference based on the minimization of
<7 is extremely general with innumerable applications. Nevertheless, the bayesian fun-
damentalists are likely to reject direct posteriors or any other procedures manipulating
the observations without the direct application of bayes theorem and strict adherence
to the likelihood principle. | remind the fundamentalists that bayes theorem is a logical
necesity only if we assume we know the prior and the model but that is almost never
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the case in practice. Besides, the posteriors obtained from bayes theorem are one of the
direct posteriors, namely the special case with paramétersy = 0 andf = n.

Maximum Entropy is more general than Bayesian Inference. In fact, there is a trivial
way in which this statement is correct not just for the standard entropy (associated to
0 = 0) but for all thed = a € [0, 1]. To see this comput®* = argminl, (P : Q) where
P andQ are joint distributions ofx, p) and the minimization is over af) subject to the
constraints that for ak, [y, Q(x, p) = 6 (Xx—X,) i.e., subject to the constraint of observing
Xo- The straight forward solution @ (x, p) = 6 (x— x,)P(p|x) for all values ofc. This
result was first obtained in [2] for the case@ 0. Hence, minimization of, is also
more general than bayesian inference.

ACKNOWLEDGMENTS
Part of this research was done while | was on sabbatical leave at RIKEN's Brain Science

Institute in Japan. | am in debt to Shun-ichi Amari for making it possible.

REFERENCES

1. T. Zhang, “Learning Bounds for a Generalized Family of Bayesian Posterior Distributidiizg
2003 Online athttp://stat.rutgers.edu/ ~tzhang/papers/nips03-bayes.pdf

2. Caticha A. and Giffin A., “Updating Probabilities”, MaxEnt 2006 Online at
http://arxiv.org/abs/physics/0608185v1

Beyond Bayes June 30, 2009 9



