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Finding the Hyperplane with Largest Margin

Let us assume that we have n labeled examples (x1, y1), . . . , (xn, yn) with labels
yi ∈ {1,−1}. We want to find the hyperplane < w, x > +b = 0 (i.e. with
parameters (w, b) ) satisfying the followin three conditions:

1. The scale of (w, b) is fixed so that the plane is in canonical position w.r.t.
{x1, . . . , xn}. i.e.,

min
i≤n

| < w, xi > +b| = 1

2. The plane with parameters (w, b) separates the +1’s from the the −1’s.
i.e.,

yi(< w, xi > +b) ≥ 0 for all i ≤ n

3. The plane has maximum margin ρ = 1/|w|. i.e., minimum |w|2.

Of course there may not be a separating plane for the observed data. Let us
assume, for the time being, that the data is in fact linearly separable and we’ll
take care of the general (more realistic) case later.

Clearly 1 and 2 combine into just one condition:

yi(< w, xi > +b) ≥ 1 for all i ≤ n.

Thus, we want to solve the following optimization problem,

minimize
1
2
|w|2

over all w ∈ Rd and b ∈ R subject to,

yi(< w, xi > +b)− 1 ≥ 0 for all i ≤ n.

This is a very simple quadratic programming problem. There are readily
available algorithms of complexity O(n3) that can be used for solving this prob-
lem. For example the so called interior point algorithms that are variations of
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the Karmarkar algorithm for linear programming will do. But, when n and d
are large (tens of thousands) even the best QP methods will fail. A very desir-
able characteristics of SVMs is that most of the data ends up being irrelevant.
The relevant data are only the points that end up exactly on the margin of the
optimal classifier and these are often a very small fraction of n.

KKT-Theory

The problem that we need to solve is a special case of the general problem of
minimizing a convex function f(x) subject to n inequality constraints gj(x) ≥ 0
for j = 1, 2, . . . , n where the functions gj are also convex. Let’s call this problem
(CO). Notice that in our case x = (w, b) ∈ Rd+1 and the constraints are linear
in the unknowns x. Don’t get confused with our previous xi’s.

The characterization of the solution to the convex optimization (CO) prob-
lem is given by the so called Karush-Kuhn-Tucker conditions.

Theorem (KKT-Conditions)

x̄ solves the (CO) problem

if and only if there exists

λ̄ = (λ̄1, . . . , λ̄n) ≥ 0

a vector of non-negative Lagrange multipliers so that

(x̄, λ̄) is a saddle point of the Lagrangean,

L(x, λ) = f(x)−
n∑

j=1

λjgj(x).

i.e., for all x and for all λ ≥ 0 we have,

L(x̄, λ) ≤ L(x̄, λ̄) ≤ L(x, λ̄).

Before proving (half of) this theorem notice that there is an easy to under-
stand intuitive reason behind this result. Think of the term added (subtracted
actually) to f(x) to form the Lagrangean L, as a penalty for an x that violates
the constraints. In fact, if gj(x) < 0, the term −λjgj(x) > 0 can be made
arbitrarily large by increasing λj . Thus, the minimizer of L(x, λ) over x will
have to make gj(x) ≥ 0. On the other hand if gj(x) > 0 then it is best to take
λj = 0 to maximize L(x, λ) as a function of λ. It is possible to show that, the
saddle point condition is equivalent to,

max
x

min
λ≥0

L(x, λ) = L(x̄, λ̄) = min
λ≥0

max
x

L(x, λ).

Proof: Let us show that the saddle point condition is in fact sufficient for
solving the (CO) problem. That it is also necessary depends on Farkas’s Lemma
and it is much more difficult to prove. We need to show that the saddle point
condition implies,
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1. for all j ≤ n,
gj(x̄) ≥ 0

and,

2. for all x that satisfies the constraints,

f(x̄) ≤ f(x)

To show 1, suppose that the ith constraint is violated. Then by taking

λi > λ̄i

and
λj = λ̄j for all j 6= i

we get,
L(x̄, λ) > L(x̄, λ̄)

which contradicts the saddle point condition.
To show 2, take λ = 0 on the left hand side of the saddle point condition

and take x satisfying the constraints on the right. Then,

f(x̄) = L(x̄, 0) ≤ L(x, λ̄) ≤ f(x).

Which proves 2. •
When all, the objective function f(x), and the constrainning functions gj(x)

are differentiable (they are infinitely differentiable in the case of SVMs) the
condition for a saddle point is simply that at that point the tangent plane to
the surface z = L(x, λ) is parallel to the (x, λ) plane. The saddle point of L can
be obtained by solving the system of equations,

∇xL(x, λ) = 0, i.e., ∇f(x) =
∑

j

λj∇gj(x)

and λjgj(x) = 0 for all j ≤ nfrom where, ∇λL(x, λ) = 0.

The second set of equations are known as complementarity conditions and are
a consequence of the constraint that λ ≥ 0.

The Dual

The min max = max min characterization of the saddle point of the Lagrangean
L provides an alternative way to find the solution of the (CO) problem. Instead
of minimizing f(x) subject to the gj(x) ≥ 0 constraints one can equivalently
maximize W (λ), where

W (λ) = min
x

L(x, λ)

subject to the constraint that λ ≥ 0. This provides an alternative route to the
same saddle point of L.
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The Support Vectors of SVMs

Let us apply the KKT-conditions to our original problem of finding the sepa-
rating hyperplane with maximum margin. The Lagrangean in this case is,

L(w, b, λ) =
1
2

d∑
i=1

w2
i −

n∑
j=1

λj {yj(< w, xj > +b)− 1} ,

and the KKT-conditions for optimality are,

∇wL = 0, i.e., w =
n∑

j=1

λjyjxj

∇bL = 0, i.e.,
n∑

j=1

λjyj = 0

λj {yj(< w, xj > +b)− 1} = 0, for all j ≤ n.

These provide a complete characterization of the optimal plane. The normal w
must be a linear combination of the observed vectors xj , that’s the first set of
equations. The coefficients of this linear combination must add up to 0, that’s
the second equation. Finally the complementarity conditions tell us that the
only non-zero Lagrange multipliers λj are those associated to the vectors xj

right on the margin, i.e., such that,

yj(< w, xj > +b) = 1.

These are called support vectors and they are the only ones needed since

w =
∑
j∈J0

λjyjxj

where J0 = {j : xj is a s.v.}. The support vectors are the observations xj at
the exact distance ρ = 1/|w| from the separating plane. The number of such
vectors is usually much smaller than n and that makes it possible to consider
very large numbers of examples with xj having many coordinates.

The Dual Problem for SVMs

The dual problem for SVMs turns out to be even simpler than the primal and
its formulation shows the way to a magnificent non-linear generalization. For a
given vector λ of Lagrange multipliers, the minimizer of L(w, b, λ) w.r.t. (w, b)
must satisfy the optimality conditions obtained above, i.e., w is a l.c. of the
xj ’s with coefficients λjyj that must add up to zero. Hence, replacing these
conditions into L(w, b, λ) we obtain the dual formulation,

maximize W (λ)
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where,

W (λ) =
n∑

j=1

λj −
1
2

∑
i,j

λiλjyiyj < xi, xj >

and the λ ≥ 0 satisfying,
n∑

j=1

λjyj = 0.

Maximizing W (λ) over λ ≥ 0 s.t. the above simple linear constraint is satisfied,
is the preferred form to feed a QP algorithm. Once an optimal λ is obtained we
find w as the l.c. of the xj as above and we find b by recalling that the plane
must be in canonical position so,

min
i≤n

yi(< w, xi > +b) = 1 = yj(< w, xj > +b) for all j ∈ J0

and we get,
b = yj− < w, xj > .

Multiplying through by λj and adding over j we find,

b =
−

∑
i,j λiλjyiyj < xi, xj >∑

j λj

and it can be readily checked that this value coincides with the value of the
Lagrange multiplier β associated to the constraint

∑
i λiyi = 0 (just find ∇λL =

0 for the Lagrangean associated to the dual, i.e. L = W (λ) − β
∑

i λiyi). The
optimal values of β and of λ are often returned by the modern QP solvers based
on interior point algorithms.
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