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Classical Regression

Recall the classical regression problem. Given observed data (x1, y1), . . . , (xn, yn)
iid as a vector (X, Y ) ∈ Rd+1 we want to estimate f∗(x) = E(Y |X = x) i.e., the
regression function of Y on X. When the vector (X, Y ) is multivariate gaussian
the regression function is f∗(x) = α + L(x) with L(x) linear, and the Ordi-
nary (yak!) Least Squares (OLS) estimator coincides with the MLE (Maximum
Likelihood Estimator). Very often the distribution of (X, Y ) is not explicitly
known beyond the n observations and the available prior information about the
meaning of these data. A typical assumption is to think of the yj as the result
of sampling the regression function at f∗(xj) with gaussian measurement error.
The model is that conditionally on x1, . . . , xn the values of y1, . . . , yn are inde-
pendent with Yj depending on Xj only and Yj |Xj = xj being N(f∗(xj), σ2).
Thus, for j = 1, 2, . . . , n

yj = f∗(xj) + εj

where ε1, ε2, . . . , εn are iid N(0, σ2). In this way the distribution of (X, Y ) is
modeled semiparametrically with (f, σ) where f ∈ F is a function in some space
of functions F and σ > 0 is a positive scalar parameter. When F is taken as the
m dimensional space F m generated by functions, g1(x), . . . , gm(x) estimation
of the regression function reduces to the linear optimization problem,

f̂ = arg min
f∈F m

n∑
i=1

(yi − f(xi))
2

The solution is then given as the orthogonal (euclidean) projection of the ob-
served vector yT = (y1, y2, . . . , yn) onto the space generated by the columns of
the matrix G ∈ Rm×n with entries gij = gi(xj). In fact, the above optimization
problem can be written as,

||y − ŷ||2 = min
w∈Rm

||y −Gw||2
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As shown by the picture, the rejection vector (i.e. y minus its projection)
must be orthogonal to the linear space generated by the columns of G, in par-
ticular (and equivalently) to each of these columns, obtaining the standard set
of normal equations,

0 = GT (y − ŷ) = GT (y −Gŵ)

with solution,

ŵ = (GT G)−1GT y

The more general case of Weighted Least Squares (WLS) corresponding to the
innerproduct < x, z >= xT Az generated by a symmetric positive definite matrix
A, is just,
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ŵ = (GT AG)−1GT Ay.

The matrix A encodes a covariance structure for the measurement errors, ε1, . . . , εn.

Over fitting and Kernel Regression

How should F be chosen?. On the one hand, we would like F to be big so not
to constrain the form of the true regression function too much. On the other
hand, big F ’s make the task of searching for the best f ∈ F more difficult and
more importantly without a constraint on the explanatory capacity of F the
solution will show no power of generalization. A big enough F will always have
at least one member f , able to fit all the observations perfectly, without error,
but this f provides no assurance that f(x) is not as bad as it can possibly be
for any point x not in the training set. To be able to assure that the size of
the mistake on future data will not exceed a given value with high probability,
(i.e. to have PAC bounds) we must constrain the capacity of F somehow. Over
the years, statisticians and numerical analysts have invented all kinds of ad-hoc
devices for achieving this goal. These are known as regularization methods.
They boil down to adding a penalty term to the OLS empirical term, often of
the form Ω(||f ||) where Ω is an increasing function and F is assumed to be a
space with a norm. The problem to be solved becomes,

min
f∈F

n∑
i=1

(yi − f(xi))2 subject to ||f || ≤ rn

where the sequence of radiuses rn → ∞ as n → ∞, but not too quickly, (at
a given rate that depends of F ) so that some form of asymptotic stochastic
convergence of the solution fn towards the projection of the true regression
function f∗ onto F is achieved.

Kernel Regression

Reproducing Kernel Hilbert Spaces (RKHS) provide convenient choices for F .

Theorem: Let K be a Mercer kernel and let H K be the associated RKHS. If

C((x1, y1, f(x1)), . . . , (xn, yn, f(xn)))

is any cost function that depends on f ∈ H K only through the values of
f(xj) at the observed xj , then the minimizer of

U(f) = C ((x1, y1, f(x1)), . . . , (xn, yn, f(xn))) + Ω(||f ||)

where Ω is an increasing function, is always achieved at a point fn ∈ H K

of the form,
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fn(x) =
n∑

j=1

wjK(xj , x).

Thus, when F = H K , a big fat infinite dimensional space, the regularized
empirical cost U = C + Ω is minimized by solving a classic regression
problem with F n = spann{K(x1, ·), . . . ,K(xn, ·)}.

Proof: The proof is surprisingly simple. Every f ∈ H K can be written as
f = g + h where g ∈ F n and h ∈ F ⊥

n . We show that,

U(f) = U(g + h) ≥ U(g)

with equality if and only if h = 0. This follows easily from the reproducing
property of the kernel spaces. For all j ≤ n,

f(xj) =< K(xj , ·), g + h >=< K(xj , ·), g >= g(xj)

since h ⊥ F n by hypothesis. Thus, C(f) = C(g). On the other hand, since Ω
is strictly increasing and g ⊥ h, by the pythagorean theorem we have,

Ω(||f ||) = Ω
(
(||g||2 + ||h||2)1/2

)
≥ Ω(||g||)

with equality if and only if h = 0. Hence, U(f) = C(g) + Ω(||g + h||) ≥
C(g) + Ω(||g||) = U(g).•

Support Vector Regression

For given values α > 0, and ε > 0 define the empirical cost function ,

C = α

n∑
i=1

|yi − f(xi)|ε

where,

|z|ε = max{0, |z| − ε}

is known as the ε insensitive function, and take,

Ω(||f ||) =
1
2
||f ||2.

With these choices, kernel regression becomes support vector regression. The
parameter ε controls the sparness of the solution. The smoothing parameter α
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controls the relative importance of the empirical cost C relative to the complex-
ity penalty Ω.

The derivation of the support vector regression problem follows closely the
derivation of support vector machines for classification. We first setup a primal
optimization problem for minimizing the above ε-insensitive regularized empir-
ical cost over functions, f(x) =< w, x > +b for the euclidean innerproduct.
Then we consider the dual problem. This turns out to be a simple quadratic
programming problem that depends on the observed data only through the val-
ues of (< xi, xj >). Just as in the classification case, we can apply the kernel
trick and rip the benefits of nonlinear kernel regression at the linear regression
cost!

The Primal Problem for SV Regression

We seek the solution of,

minimizeα
n∑

i=1

|yi − f(xi)|ε +
1
2

n∑
i=1

w2
i

over b, w when f(x) =< w, x > +b. This is equivalent to,

minimizeα
n∑

i=1

ui +
1
2

n∑
i=1

w2
i

over ui, wi, b subject to: ui ≥ |yi − f(xi)|ε for i ≤ n. Each of the last n
inequalities corresponds to three inequalities,

ui ≥ 0, ui ≥ yi − f(xi)− ε, ui ≥ f(xi)− yi − ε

Applying the standard trick of adding non negative slack variables ξi and ξ∗i
we soften the inequalities and allow small violations. So we replace the above
constrained optimization problem with,

minimizeα
n∑

i=1

ui +
α

2

n∑
i=1

(ξi + ξ∗i ) +
1
2

n∑
i=1

w2
i

subject to: for i ≤ n,

yi − f(xi)− ε ≤ ui + ξi

f(xi)− yi − ε ≤ ui + ξ∗i

ui ≥ 0, ξi ≥ 0, ξ∗i ≥ 0.

The objective function was chosen so that we can factorize out α/2 and write,

α

2

n∑
i=1

({ui + ξi}+ {ui + ξ∗i }) +
1
2

n∑
i=1

w2
i
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In this way we can get rid of the ui by just replacing ui + ξi by ξi and ui + ξ∗i
by ξ∗i every where. Also, replace α/2 by a new α to obtain the problem:

(Primal) minimize α
n∑

i=1

(ξi + ξ∗i ) +
1
2

n∑
i=1

w2
i

over, wi, b, ξi, ξ
∗
i subject to: for i ≤ n,

yi − f(xi)− ε ≤ ξi

f(xi)− yi − ε ≤ ξ∗i

ξi ≥ 0, ξ∗i ≥ 0
and f(x) =< w, x > +b.

The Dual Problem for SV Regression

The Lagrangian in terms of non negative Lagrange multipliers is,

L = α
∑

i

(ξi + ξ∗i ) +
1
2

∑
i

w2
i

+
∑

i

λi{yi − f(xi)− ε− ξi}

+
∑

i

λ∗i {f(xi)− yi − ε− ξ∗i }

−
∑

i

βiξi −
∑

i

β∗i ξ∗i .

To compute the dual we need to find,

W (λ, λ∗, β, β∗) = min
w,b,ξ,ξ∗

L

The values of w, b, ξ, ξ∗ where the minimum is achieved must satisfy,

∇wL = 0 ⇐⇒ w =
∑

i

(λi − λ∗i )xi

∇bL = 0 ⇐⇒
∑

i

λi =
∑

i

λ∗i

∇ξL = 0 ⇐⇒ λj + βj = α for j ≤ n.

∇ξ∗L = 0 ⇐⇒ λ∗j + β∗j = α for j ≤ n.

Replacing these equations into L we obtain that all the terms involving ξi and
ξ∗i dissapear from L and with them, β and β∗. Therefore, W is only a function
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of λ and λ∗. We get, replacing K(xi, xj) for the innerproducts < xi, xj > (the
kernel trick!) that,

W (λ, λ∗) =
1
2

∑
i,j

(λi − λ∗i )(λj − λ∗j )K(xi, xj)

+
∑

i

(λi − λ∗i )yi − ε
∑

i

(λi + λ∗i )

−
∑
i,j

(λi − λ∗i )(λj − λ∗j )K(xi, xj)

The first and last terms simplify to produce,

W (λ, λ∗) = −ε
∑

i

(λi + λ∗i )

−1
2

∑
i,j

(λi − λ∗i )(λj − λ∗j )K(xi, xj)

+
∑

i

(λi − λ∗i )yi.

The dual problem becomes,

(Dual) max
λ,λ∗

W (λ, λ∗)

subject to:

∑
j

λj =
∑

j

λ∗j

0 ≤ λj ≤ α, 0 ≤ λ∗j ≤ α.

where we have replaced the equalities λj + βj = α, involving λj ≥ 0, βj ≥ 0 by
the equivalent inequalities shown above, that do not involve the βs.

As it was the case for classification, the dual problem is a simple quadratic
programming problem that can be solved with efficient algorithms that are
publicly available.

The solution from the QP solver is then used to produce the estimate,

ŵ =
∑

i

(λi − λ∗i )xi

The KKT complementarity conditions, for the slack variables are of the type
ξj(λj −α) = 0 so we can write the other complementarity conditions as follows,

λj{yj − f̂(xj)− ε} = 0 provided λj < α

λ∗j{f̂(xj)− yj − ε} = 0 provided λ∗j < α
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are valid (and non trivial) for all j ∈ J0, and j ∈ J∗0 (resp.), where

J0 = {j : j ≤ n, and 0 < λj < α}

with J∗0 defined analogously.
These, and the complementarity conditions associated to the inequalities

λj ≤ α and λ∗j ≤ α make many λj = λ∗j to be either 0 or α and producing
a sparse solution. The value for b can be obtained from any of the above
complementarity conditions, but a more accurate value is obtained by combining
efforts. Replacing the estimated values of the regression function at the training
points,

f̂(xj) =
∑

i

(λi − λ∗i )K(xi, xj) + b

into the complementarity conditions, solving for b, multiplying through by λj

and λ∗j and adding over j ∈ J with J = J0 ∩ J∗0 we get,

∑
j∈J

λjb =
∑
j∈J

λj{yj −
∑

i

(λi − λ∗i )K(xi, xj)}∑
j∈J

λ∗jb =
∑
j∈J

λ∗j{yj −
∑

i

(λi − λ∗i )K(xi, xj)}

adding the two equations, we finally obtain the estimate

b =

∑
j∈J(λj + λ∗j ){yj −

∑
i(λi − λ∗i )K(xi, xj)}∑

j∈J(λj + λ∗j )

Example: SV Regression in Action

The following picture shows n = 30 samples (the circles) from the true regression
line (the red curve) with gaussian error and σ = 0.5. The green curve is the
estimated regression line computed using a gaussian kernel. The blue curves
show the ε = 0.4 insensitive tube around the estimate. The support vectors are
marked with plus signs and a value of α = 1.5 was used. The Maple(9.5) code
is available from this site and uses the QPsolve program in efficient matrix form
from the new Maple optimization package.
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