
Learning Patterns

Carlos C. Rodŕıguez
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Set up

We assume labeled data X ∈ Rd with label Y ∈ {0, 1}. For example X = x
could be the vector of pixels of a digital image of a human face and Y = 1 may
mean that x is the face of a woman instead of a man. The random vector (X, Y )
has distribution specified by, for example, a probability measure µ for X and
the regression function η(x) of Y on X. We have,

P{X ∈ A} =
∫

A

µ(dx)

and

η(x) = P{Y = 1|X = x}

Clearly, by the sum and product rules of probability, we have

P{(X, Y ) ∈ C} =
∫

C0

(1− η(x))µ(dx) +
∫

C1

η(x)µ(dx)

where C0 contains all the x’s such that (x, 0) ∈ C. The joint distribution of
(X, Y ) can be specified in other ways. Instead of picking first x according to µ
and then flipping a coin with probability η(x) to determine the label, we could
also do it backwards.

First choose a label with (prior) probability P{Y = 1} = π and then choose
x with density (assuming there is one) f0 or f1 depending on the previously
generated label y. Hence, for y ∈ {0, 1}

P{X ∈ A|Y = y} =
∫

A

fy(x)dx

By conditioning of Y we obtain,

P{X ∈ A} = (1− π)
∫

A

f0(x)dx + π

∫
A

f1(x)dx =
∫

A

µ(dx)
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Thus, if µ has a density f(x) = µ(dx)/dx it must be a mixture,

f(x) = (1− π)f0(x) + πf1(x)

Also, by the holy theorem,

η(x) = P{Y = 1|X = x} =
f1(x)π
f(x)

The Bayes Classifier

A classifier is a map δ : Rd → {0, 1} that assigns 0 − 1 labels to data vectors
x ∈ Rd. The quality of a classifier δ is measured by its risk R(δ) which is simply
its probability of error,

R(δ) = P{δ(X) 6= Y }

The Bayes rule is the classifier δ∗ with smallest possible risk, so that for all
δ,

R(δ∗) ≤ R(δ)

We call R∗ = R(δ∗) the Bayes risk. It provides a measure of difficulty for the
pattern recognition task at hand. It is a characteristic of the joint distribution
of (X, Y ).

A standard result of statistical decision theory is that the Bayes rule for
the all-nothing (i.e. 0-1) loss function is the mode of the posterior distribution.
Thus, δ∗(x) = 1[η(x) > 1/2].

Here is an easy proof for the special case of pattern recognition. Let A(δ) =
{x : δ(x) = 1}. Since f1 is a density that integrates to 1, we have:

R(δ) = (1− π)
∫

A(δ)

f0(x)dx + π(1−
∫

A(δ)

f1(x)dx)

Which can be written as,

R(δ) = π +
∫

[(1− π)f0(x)− πf1(x)]1A(δ)(x)dx

Notice that the rule claimed to be Bayes, assigns 1 when η(x) > 1/2 and this
is equivalent to require the expression in square brackets above to be negative.

Now denote by Q(x, δ) the function that is being integrated above and show
that for all x ∈ Rd, Q(x, δ∗) ≤ Q(x, δ) (just consider each of the four cases of x in
or outside A(δ) and A(δ∗) separately). It then follows, by the last equation above
and the monotonicity of integrals, that δ∗ has the smallest possible probability
of error and so it is the Bayes rule as claimed.
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An Example

To make things concrete consider the simple case of deciding wether an observed
real number x was generated by a gaussian with mean m0 and variance 1 or a
gaussian with mean m1 and variance 1, and the two choices are considered a
priori equally likely (see figure).

We want to compute the Bayes rule when the distribution of (X, Y ) is char-
acterized by π = 1/2 and fy = N(my, 1). For this case,

A(δ∗) = {x : f0(x) < f1(x)} = {x :
−(x−m0)2

2
<
−(x−m1)2

2
}

and simplifies to,

A(δ∗) = {x : |x−m1| < |x−m0|}

This shows that the best rule is to choose the distribution with mean closest
to the observation x.

If we assume that m0 < m1 and let m = (m0 + m1)/2 be the middle point,
then the Bayes risk R∗ is,

R∗ =
1
2

∫ ∞

m

ϕ(x−m0)dx +
1
2

∫ m

−∞
ϕ(x−m1)dx

By letting z = x − m0 in the first integral, z = x − m1 in the second and
defining 2a = (m1 −m0) we obtain a much simpler form,

R∗ =
∫ ∞

a

ϕ(z)dz

depending only on the separation between the two means. Here are some
values,
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|m1 −m0| R∗

0.1 0.480
0.5 0.401
1.0 0.309
2.0 0.159
4.0 0.023
6.0 0.001

Learning Patterns from a Teacher

If we knew the distribution of (X, Y ) we could compute δ∗, the Bayes rule, as
shown above. Unfortunately, we rearly know the distribution of (X, Y ). This
creates two problems. First, we cannot directly use δ∗ since it depends on the
parameters of the unknown distribution of (X, Y ). We need to know either
the sign of (η(x)− 1/2) or the sign of [(1− π)f0(x)− πf1(x)]. Second, we can
not even evaluate the risk R(δ) of any classifier δ for that also depends on the
unknown distribution of (X, Y ).

But if we have available n independent observations (X1, Y1), (X2, Y2), . . . , (Xn, Yn)
of the vector (X, Y ) then we could use them to estimate the missing distribution
of (X, Y ) with the empirical distribution based on the observations. This could
be interpreted as past data that was labeled by a reliable teacher.

Thus, we could approximate the true probability P{(X, Y ) ∈ C} with the
observed frequency given by the empirical measure νn,

νn(C) =
1
n

n∑
i=i

1[(Xi, Yi) ∈ C]

The true risk R(δ), for a given classifier δ, is estimated from the observed
data with the empirical risk,

R̂n(δ) =
1
n

n∑
i=1

1[δ(Xi) 6= Yi]

There is then the possibility of evaluating the quality of a δ with its observed
frequency of errors R̂n on the available data Dn = (X1, Y1, . . . , Xn, Yn). But we
should always keep in mind that this performance is different for different data
sequences. A classifier that is built from given data Dn has as its true risk,

Rn = P{δn(X;Dn) 6= Y |Dn}

Consistency

It is desirable to be able to quantify not just how good a classifier is on a fix data
sequence Dn but to also know how a given classification method or rule behaves
on most data sequences. In particular the notion of a consistent sequence {δn}
of classifiers is simply the requirement that,
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ERn = P{δn(X;Dn) 6= Y } → R∗ as n →∞.

A classification rule may be consistent for some distributions of (X, Y ) but
not for others. If however it is consistent for all of them we say that it is
universally consistent. Are there any known universally consistent rules? Yes!
for example the k-nearest neighbor rule (knn for short) is one of them. The
knn is simply the rule that assigns to x the most common observed label among
its knn’s (in any metric topologically equivalent to the euclidean). Universal
consistency for the knn is achieved only when k = k(n) is such that k →∞ and
k/n → 0 as n →∞. These are the good news. The bad news: the convergence
can be arbitrarily slow! Consistent rules with a given rate of convergence for all
distributions of (X, Y ) do not exist. This is interesting. On the one hand we
know that given enough independent examples it is possible to get arbitrarily
close to the performance of the Bayes rule. On the other hand it may take
arbitrarily long for that to happen.

There are two ways out of this impasse. Use prior information to constraint
the possible probability distributions for (X, Y ) or change the target R∗ by
considering only a subclass C of classifiers. We take the second route first and
show that there are classes C that provide universal rates of convergence to the
best δ∗C for that class, i.e.,

R(δ∗C) ≤ R(δ) for all δ ∈ C

Empirical Risk Minimization

Let us assume that we have data Dn as above from where we can estimate the
true risk of a classifier δ by using the observed frequency of errors on Dn, i.e.,
by its empirical risk. Let δ∗n be the classifier that minimizes the empirical risk
over a given class C of rules, i.e.,

R̂n(δ∗n) ≤ R̂n(δ) for all δ ∈ C

We would like to know what kinds of classes C allow universal empirical
learning, in the sense that for all distributions of (X, Y ),

R(δ∗n) → R(δ∗C) as n →∞

It is intuitively clear that what’s needed is some kind of constraint on the
“size” (a better term would be capacity) of C. For example if C contains all
possible classification functions, then no matter what the sequence Dn is, we
can always find a function in this class that fits the data perfectly. However we
also feel intuitively that such a rule will over fit the observed data and it will
show poor performance on sequences other than the observed Dn, i.e. we expect
such rule to have poor generalization power. This intuitive reasoning will be
rigorously confirmed by means of the celebrated Vapnik-Chervonenkis theory.

We first notice the following simple result:
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Lemma 1

R(δ∗n)− inf
δ∈C

R(δ) ≤ 2 sup
δ∈C

|R̂n(δ)−R(δ)|

and

|R̂(δ∗n)−R(δ∗n)| ≤ sup
δ∈C

|R̂n(δ)−R(δ)|

Proof:
R(δ∗n)− inf

δ∈C
R(δ) = R(δ∗n)− R̂(δ∗n) + R̂(δ∗n)− inf

δ∈C
R(δ)

≤ sup
δ∈C

|R(δ)− R̂n(δ)|+ sup
δ∈C

|R̂n(δ)−R(δ)|

The second part is trivial.
The above lemma shows that in order to achieve universal consistency on

a given class, it is sufficient for the supremum appearing on the rhs of the
inequalities to go to zero with probability 1, i.e., all we need to show is strong
uniform convergence, over the given class, of empirical error to the true error.
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