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AbstractInformation Geometry brings a new level of objectivity to bayesianinference and resolves the paradoxes related to the so called LikelihoodPrinciple.
Introducing the Bayesian Acolyte
The acolyte has come from far away to learn from the famous wise men ofmodern inference. At the time of this tale, the subject of statistics is in themiddle of a tumultuous transformation with statisticians metamorphosing awayfrom bookkeepers of statistical tables into bookkeepers of all human knowledge.There is a revision of the foundations of everything and the Likelihood Principleis at the center of it. We �nd the acolyte trying to explain the problem and hissolution to a small group of friends...
Two Descriptions of a coin 
ip
Consider the classical canonical experiment of 
ipping a coin (a U.S. quarter)with unknown probability of tails t 2 [0; 1]. We provide two descriptions, A, andB, of the outcomes of the same coin 
ip. Description A is the usual one. Theoutcomes are either tails, x = 0 or heads, x = 1. The alternative description B,also labels tails with x = 0, but when heads come up, description B labels theoutcome with either x = 1 or x = 2 depending on the direction of Washington'shead w.r.t. �x cartesian coordinate directions on the 
oor, with origin right onthe center of the coin. Thus, if an imaginary arrow, going from Washington'sneck to the top of his head, points westwards (i.e. has a positive east-westcomponent) we label the outcome of heads with x = 1 and if it points eastwards(i.e., negative east-west component) we label it with x = 2.Let us suppose that we are somehow able to 
ip the coin in such a way thatthe two likelihoods, de�ned for x 2 R and t 2 [0; 1] are,

p(xjt; A) = t�(x) + (1� t)�(x� 1)
and,
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p(xjt; B) = t�(x) + t(1� t)�(x� 1) + (1� t)2�(x� 2)
The LP's Sex Appeal
Our illustrious bayesian forefathers (no known moms out there...) have warnedus about the perils of using priors that depend on anyway on the likelihood.These, we are told, will open Pandora's box of paradox.To begin with, it is claimed, it is obviously schizophrenic to assign di�erentprior probabilities to the exact same parameter t = p(x = 0jA) = p(x = 0jB).For it is the same coin, the same observed tails under both descriptions. Never-theless, suppose that bad in
uences push you to use di�erent priors, p(tjA) andp(tjB) for the parameter t in the two descriptions above and that you 
ip thecoin and you get tails, i.e., x = 0. Now, we are told, you could easily exposeyour mistake by just computing the posterior probabilities for A and for B.So, you go ahead and start computing: Shaking the bayes wand (i.e., applyingbayes theorem) obtain,

p(Ajx) = p(A)p(x)
Z 1
0 p(xjt; A)p(tjA)dt

and, p(Bjx) = p(B)p(x)
Z 1
0 p(xjt; B)p(tjB)dt:

At this point of your calculation you hit a small wall. To get numbers,at least for the ratio p(Ajx)=p(Bjx), you would need the prior probabilitiesfor the descriptions A and B that no one gave you. You ask the forefathersfor help but here the forefathers run out of magic things to shake and startshaking themselves instead, claiming \ignorance" or an appeal to the principleof insu�cient reason or plainly telling you to assume p(A) = p(B) to make them(pu�!) disappear. You do just that and replace x = 0 in the above formulas toobtain,
p(Ajx = 0)p(Bjx = 0) =

R 10 tp(tjA)dtR 10 tp(tjB)dt
Hmm, you say. I see, if the two di�erent priors happen to give di�erent expectedvalues for t then that would mean that the observation of tails (i.e., x = 0) givessome evidence in favor of one of the two descriptions... And the forefathersquickly add: Yeah, and that's crazy! For, there is nothing in the coin, nor inthe way you 
ipped it, that could distinguish between descriptions A and B.PERIOD.
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The Acolyte Learns Geometry
Before coming to this country I studied a fair amount of math and physics. Iknew about Hausdor� and Banach and Hilbert spaces and I was supposed toalso know about riemannian manifolds but later I realized that I didn't. Whydo I tell you this?. Because I think you may �nd my experience useful.To continue... the concept of manifold, and with it the importance of noneuclidean geometries, hit me unexpectedly one morning on a train along theHudson river. I ow it to Dubrovin, Fommenko and Novikov volume 1. I realizedthen, that it was possible to study shapes, volumes, curvatures, intrinsically,without reference to any outside, and of objects made out of abstract thingsthat we still call points but that could be very di�erent from the familiar pointsof physical space. Shun-ichi Amari's lecture notes on Di�erential Geometry re-vealed to me that these objects could be collections of probability distributions,in fact, most of the hypothesis spaces in statistical inference were riemannianmanifolds. More over, it turns out, the intrinsic geometries of regular hypothe-sis spaces are �xed by simple consistency requirements and the only admissiblemetric is proportional to Fisher information. This is an objective purely mathe-matical fact that we must take into account an try to exploit to our advantage.
IgnoranceOne very useful fact that follows from all of this is an extension of Laplace's prin-ciple of insu�cient reason to general regular statistical models. In every regularhypothesis space, there is a �xed objective notion of uniformity, i.e. of what it ismeant to choose a point (a probability distribution in this case) uniformly overthe whole space. This objective underlying measure of uniformity, provides thereference vacuum of knowledge (i.e., ignorance) for the space. The instrument,the equipment that will be used to run the experiment, �xes the likelihood andthat in turn �xes the meaning of no-thing! (�! 0 for the cognoscenti). It �xesthe vacuum.
The Acolyte Shows O� His New Tricks
Let's do all the computations for our coin problem. We have here two hypothesisspaces. The hypothesis space associated to the standard description A is the setof all probability distributions on the data space f0; 1g. This is a compact onedimensional manifold with boundary. We could think of it as a curve inside thespace of all possible distributions on the real line. This line exists independentof any parametrization. In fact, we have just de�ned it without introducing anyparameters. We can compute its length by integrating its element of length,

l(A) = Z
A
dl = Z 1

0 dtpt(1� t) = �
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Thus, even though we can label the points along this line with t 2 [0; 1], the linedoesn't have length one but about 3:14 because it curves. Geometrically this isnot unlike half a circle on the xy-plane, i.e., the points in euclidean space withcoordinates,
pA(t) = cos(�t) e1 + sin(�t) e2 for 0 � t � 1

where fe1; e2; e3g is a �x orthonormal frame. Straight forward computationsprovide the corresponding length associated to B as,
l(B) = Z

B
dl = Z 1

0
s 2� tt(1� t) dt � 3:82

Geometrically, the hypothesis space B is like the curve of points,
pB(t) = cos(ct) e1 + sin(ct) cos(ct) e2 + sin2(ct) e3; for 0 � t � 1

where c = � makes the length to be about 3:82. Hence, under the assumptionof total ignorance, the geometry demands to assign,
p(A) = l(A)l(A) + l(B) � 0:45

and, p(B) = l(B)l(A) + l(B) � 0:55
for the apriori probabilities for the two descriptions! That's pure objectivemagic.After observing the tails, x = 0 the posterior probabilities (using the aboveprior probabilities p(A) and p(B)) are,

p(Ajx = 0) / 0:453:14
Z 1
0 tpt(1� t) dt � 0:23

and,
p(Bjx = 0) / 0:553:82

Z 1
0 ts 2� tt(1� t) dt � 0:25

producing,
p(Ajx = 0) � 0:48 and p(Bjx = 0) � 0:52

But what do these numbers mean? You ask.... and I explain.These numbers have a very simple and totally objective interpretation freeof paradox. These are the approximate frequencies that would be observed ifyou collect together all the probability distributions in A and in B and chooseuniformly among them. Think of all these points as the set,
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S = fpA(t) : t 2 [0; 1]g [ fpB(t) : t 2 [0; 1]g
of vectors in euclidean space. Choose uniformly among them, to obtain a point psay. Then, sample the probability distribution that corresponds to the selectedpoint. Repeat over and over again and count the frequency of occurrence of Awhen x = 0. You'll get 48%. No paradox.
Moral: Probabilities are NOT physical

Even though we used the same letter t to label both p(x = 0jA) and p(x = 0jB)that was only a parameter, a coordinate that lacks any meaning beyond a labelfor a probability distribution. Probabilities do not attach to physical reality.No matter what experiments we do now or in the future we'll never be able tosee a single probability. QM included. Because probabilities do not attach tothe world but to our descriptions of the world, to logical propositions in a givendomain of discourse. Thank you Ed Jaynes.
Not Physical but ObjectiveHow come?... Just like the rest of mathematics actually (See What's Mathe-

matics, Really?)
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