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Abstract. This is an incomplete sketch of a theory that produces a Model and a prior on it, from observed data and other
explicitly stated prior information. Such a theory shows the potential of explaining the universe around, and inside us. Such a
theory is ultimately a theory of ignorance. | cry out loitcand bit from not!

Additional information is available online &ttp://omega.albany.edu:8008/ignorance
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INTRODUCTION

Infandum, regina, iubes renovare dolorem, Troianas ut opes et lamentabile regnum cruerint Danai; quaeque ipse
miserrima vidi, et quorum pars magna fui. Quis talia fando Myrmidonum Dolopumve aut duri miles Ulixi temperet a
lacrimis? Et iam nox umida caelo praecipitat, suadentque cadentia sidera somnos.

THE MAIN PROBLEM OF INFERENCE

From prior informationO and dateD = (X1, X, .. .,%n) = X" obtaina modelM = {P, : 6 € ©} and a priorr = 7(0)
onM.

With the necessary ingredientdd,D,M, ) we can cook a bayesian omelet on a large enough computer and
instantiate,

Inference= Bayes+ Computing
where Bayes stands for his theorem,

p(D|6,M,0)p(6|M,0) @)
p(D|M,O)

In what follows we simply writep = p(D|8, M, O) for the likelihood,m = p(6|M, O) for the prior, andZ = p(D|M, O)
for the evidence.

p(6|D,M,0) =

The prior is half the problem

This paper concentrates primarily on a simplified version of the main task. We assume that &/niodeghilable
as part of the prior informatio®. Our problem is to find the prior distributiom over M. Hence, except for the last
two sections where we consider model selection, we assumlthad.

We want to find an objective mechanism for producing prior distributiofrem explicitly stated prior information
O when the modeM is part of O. Our only principle is honesty. We demand outo be maximally ignoranabout
everything except what is explicitly contained@n

IGNORANCE RELATIVE TO M AND O

To proceed, we need a concept of ignorance relative to a nfvbdeld possibly extra prior informatidd. Our proposal

is based on the trivial realization that ignorance is nothing but uncertainty about truth. A quantity designed to measure
the amount of ignorance contained in a given pri@mverM must depend on the location of the true distribution, in the
space of all distributions for the data. For the object of ignorance is truth; We are ignorant about truth. But ignorance
is not just measured by the proximity of the true distributigx) to the modeM. A small modelM far away from
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t is not ignorant about truth, it is very knowledgeable, but about the wrong thing. It is precisely incorrect. Our initial
task is to assess the amount of ignorance in a prior distributioner a given modeM, not the quality ofM itself.
ChoosingM will be the subject of model selection that is treated at the end of this paper.

Our intuitive concept of ignorance is at the center of a tug of war between two forces pulling it in opposite directions.
On the one hand we would like our ignorant pripoverM to be as spread as possible overOn the other hand we
would like 7 to make the parametéras stochastically independent as possible from thexddtegeometric termg
should be close to the uniform distributionoverM and also the joint distributiop(x, 8) = p(x|6)x(8) (or p(X)7(p)
in parameter free notation) should be close to the independent r{agte(6) (or t(x)z(p)). Even though the true
distributiont(x) is never known completely, it is often asymptotically learnable from observed data. Clearly, in the
absence of actual observations or other restrictions, sdrafM} is all that is known, the concept of ignorance
should reduce to plain uniformity ovét. The other extreme, i.e., whé(x) is precisely localized b, the ignorant
prior over M should reduce to a point mass e ™M wherepis the projection ot on M. The intermediate case
should be a compromise between uniformity oMeand concentration abogt A trade-off between uniformity and
independence.

To finish our attempt to quantify relative ignorance we need only a meaningful notion of separation between
probability distributions. Thus, D is such a measure for joint distributions(af 6) andD;, for distributions oveM
then, the maximum ignorant prior is defined as théhat minimizes the action,

o = a D1(p7,tx) 4+ Da(7, ) @)

where ¢ is a positive scalar parameter that measures the uncertainty tlaogt effectively weights the relative
importance of independence versus uniformity.

In the next section we review the basic facts from information geometry. In particular, we identify the class of all
the statistically meaningful measures of separation between unnormalized probability distributions as the family of
d-deviations.

INFORMATION GEOMETRY TOOLS

Differential geometry provides a powerful and natural language for statistical inference. We collect in this section
some basic facts, definitions and notation for future reference. Amari’s books are still the standard reference.

Let & be the space of all probability distributions on a given (Hausdorff) measurable space. We dendtihdy
cone of finite positive measures on the same measurable spapes iZ€. &= [ = cpwith pc £ andc > 0. Notice
that & is closed under addition and multiplication by a positive numberdus not. Recently, Zhou and Rohwer
have demonstrated that there is nothing to be lost but a lot to be gained by considering objécttlier than in22.
We follow here their advice and most of their notation.

A model (also known as regular statistical model or hypothesis sphtea subset of” which is also a riemannian
manifold with Fisher information as the metric. Fpe &2 andd € (0, 1] we denote by,

p’
ls=15(p) =5 3)
we also defindy = | = logp. We calllz(p) the §-coordinates of € 2. Notice thatls(p) € Ly/s the space obth
power finite measures defined by,
Ll/(gz{p‘sf:peg5 andfeLl/a(p)} (4)

L1/ is a Banach space with the obvious identification of objentd, = q®g whenever they ¢ L1/s(q) is actually

(p/q)? f. Notice thatp/qis a Radon-Nikodym derivative, when it exists.
Fisher information on the wholé” is given for allé € [0,1] by

1) = (e () = (< 23, ) = ( [Pt 31 ) = [ a5 3125 ®

wheregj (p) is given relative to a choice of an ordered Hilbert basi&inThus,d; denotes the Gateaux derivative
in the direction of the chosdith coordinate basis ih,. It is convenient to think of the infinite dimensional manifold,
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2 with the above metric, as the ambient external space for our mtieThe concepts of-geodesic-flat, and
d-convexM, as itis embedded ik /s, are then just defined with the help of the coordin$ép) in the Banach space
Li/s.- We have these properties when @eoordinates form respectively a straight line, flat set, and convex set in

We denote bylV = dWy the volume form for the modéll. In a given parameterization,
dV = o(0) =|1(6)|"/?d6 = \/detl (6) d6 (6)
For 8 € (0,1) andp,q € & the §-information-deviation (or jusb-deviation for short) betweep andq s,
1 " _
|6(D3Q)=m/[5p+(1—5)q—p5ql ] (7)
and ford € {0,1} just take limits of the expression above to obtain the Skilling actions,
Il(p:q)zlo(q:p)=/(q—p+plogg) ®)
Whend =1/2,
1/2(p:0) =2 [ (VP— V) ©

is twice the square of the Hellinger distance, i.e. the familiadistance between wave functions. Notice that to
compute s(p: g) one picks any measure= & dominating bottp andq (e.g.p+ g is always a choice), replageand

g by their densities with respect toi.e. p/r andq/r and carry out the integral with respect to the chosen measure
The final result is independent of the choicerofhus,ls is truly a functional of the positive measurpsandq and
not just their densities.

Properties ofd-information

The family of §-deviations has a number of remarkable properties:
. homogeneity:15(cp:cq) =cls(p:q) forallc > 0.
. positivity: I5(p:q) > 0 with equality iff p= q.

- duality: Is(p:a) =Il15(d: p)
. invariance: for anyT : 2" —— % with positive jacobian we have,

A WN PR

ls(p:a) =Ils(pr:ar)

wherepr = po T 1 is the transformed probability distribution #f.
5. sufficiency: T : 2" — # is sufficient for discriminating probability distributionsandq (i.e. [ p= [gq=1) iff

ls(p:a) =Ils(pr:ar)

6. uniqueness:ls(p: q) are the only functions with the above properties.

7. topological equivalence:For € (0,1) all the |5 topologies are equivalent to the Hausdorff topology of the
Hellinger metric, i.e. the topology generatediBy.

8. Taylor expansion: In a given parameterization,

1 . 10 5 1 o
ls(0+ev:0) = Egij\/'v'£2+ 5Tk + Twij + [ jiVVIVe3 +o(e?)
where the Christoffel symbols are given by Amafgi'’sonnection,
5 s -
FCijk= <|]a, 9j79k> = / p [6i9jl + & a1 dj1]kl
The Levi-Civita metric connection corresponds to the self-dual 6asel/2.
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9. eguchi relations:

. ) s . )
gij = —adjls(P:d)|p=q Fijk=—0djkls(P:d)|p=q

10. generalized cosine:

15(p:0)+15(r @) = 15(P:a)+ [ (15(P) ~15(r)) (11 5(@) ~11_5(1)

11. generalized pythagorasif the §-geodesic connecting to r is orthogonal to th¢1 — §)-geodesic connecting
to qthen,

ls(p:r)+1s(r:a) =1s(p:q)

Special cases a¥-information-deviations have been discovered and re-discovered more, perhaps, than any other
concept in the history of statistics. With the sole exceptiod ef 1/2, the 5-deviations are not symmetric, and do
not satisfy the triangular inequality so they don't define distances, in the usual way. However, the above properties
make them to be the onktatistically meaningful way of measuring separation in the extended space of unnormalized
probability distributions. Thé-information-deviations are the one and only one measures that are positive definite,
and preserve all the fundamental symmetries of statistical inference, i.e. invariant under coordinate transformations
of both the data and the parameter space and invariant under sufficient reductions of the data. If further more, one
demands additivity over independent sources of information then, the only survivors are the Skilling actions which
coincide with the Kullback numbers for normalized probability measures.

S-flat Models

To finalize our quick over-view of IG we mention that intrinsicaliyflat models (i.e. with zero riemman tensor
associated to th8-connection) are always alst — 6)-flat and therefore admit mutually orthogonal geodesic coordi-
nate system&,n). TheO coordinates aré-affine, i.e. make thé-Christoffel symbols to be 0. The coordinates are
(1 o)-affine and make thél — §)-Christoffel symbols 0. More over, in these special coordinate systems the metric
gij, and its invers@' are obtained by differentiating scalar potentigd®) and¢(n), i.e.,

gi(6) = adw(0), g'(n)=0'd¢(n). (10)
and the two potentials are Legendre transforms of each other (just like entropy and free energy in Statistical Mechan-
ics),

w(0)=6'n—¢(n) (11)
with
6'=2'9(n), and ni=ay(6). (12)
In these coordinates,
l5(Po : Gn) = W(6) + ¢ (n) — 6'ni. (13)

The extended spac# is 5-flat ands-convex for all§ € [0,1]. The space of all the discrete distributions on a finite
set of atoms is also intrinsical§-flat for all 5. Exponential family models are intrinsical(®, 1)-flat.

ALL THE INVARIANT ACTIONS FOR IGNORANCE

As shown in the previous section, Information Geometry provides the needed class of measures of separation to be
used in (2). Two are needed since we need to measure separation in two different spacksfd®iceviations

between joint distributions ofx, ) and pickl,_, for quantifying deviations of distributions ovét. We arrive to a

three parameter family of invariant actions,
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o (ma,8,v)=alsg(pr:tn)+11_,(7: ©) (14)

where the parameterg, > 0, § € [0,1] andv € [0,1] are free for now. The actions defined in (14) also depentl on
and implicitly onM andO but it is not shown explicitly to keep the notation simple. Even thopgtppears on the
right hand side of (14), it is integrated over insigeso./ itself is not a function ofp.

Thed-deviations are well-defined in the extended spatef unnormalized positive measures and the extra freedom
makes the optimization of actions of type (14) simpler. To take advantage of this benefit we adhere from now on to the
following notational convention:

Assumption 1 Distributions over M, liker and @ may appear unnormalized. Equations suchz($)) = f(0) could
meanr(6) O f(6) when needed anal may stand for a scalar density or a form depending on the context.

We are now ready to formally define relative ignorance.

Definition 1 (relative (8, v)-ignorance) We say that a* is (8, v)-ignorant at levelo > 0 relative to M and O iff
" =argmind (x;a,0,V) (15)
re0

where, for lack of better notation, we writec O to mean that the minimum is to be taken over all thtéhat agree
with the prior information contained i®. Before writing the general solution for the ca@e= {M}, we consider the
following:

Theorem 1 Ig(px:tx) = [y ls(p:t) m(p)dV.

Proof Just an application of Fubini’s theorem. The cése {0,1} follows by continuity from the casé < (0,1) for
which,

§5(1—8)ls(pr:tn) = /[5p7r+(1— S)tn— pPadtt-d -8 = §(1- ) /n I5(p:t)

Q.E.D.

In words: Thed-deviation between the joint distributign(x)z(p) and the independent modgk)x(p) is always
equal to the expectadi-deviation betweep(x) andt(x), where the expectation is taken with respect to the prig).
Thus, the choice of is effectively a choice of distance for distributions over the data space. The choicpetifies
the distance for distributions ov&f or, equivalently, the parameter space. With the help of this theorem let us re-write
the actions (14) as,

o (ma,d,v) = a(lsgp:t),+l-v(7: o) (16)
= (X{lg(pﬂ:tﬂ)+;—|1v(ﬂ':a))} a7)

Using the standard arguments from optimization subject to inequality constraints (Khun-Tucker) we can show that
the 7* minimizing (16) is the same as the" closer to the uniform oveM (in the (1 — v)-deviation) subject to a
maximum average distance (in thedeviation) front. In the caser = 0 this is literally maximum entropy subject to a
constraint. In a similar way, by using (17) we can choose to optimize independence subject to an inequality constraint
on uniformity. We write it as a theorem,

Theorem 2 The following are all equivalent:

1. n*is (8, v)-ignorant at levela > 0.

2.
"= argmax{—li_y(7: o)} (18)
S.t.
<lg(p:t) >z < Emax
3.
" = argminls(pr:tr) (29)
s.t.
Iv(w:7) <Cmax
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where Ehax, Cmax, @anda are functions of each other.

Theorem (2) provides a simple geometric characterization for our concept of ignorance. The ignorant prior is the one
that maximizes spread ovBt subject to keeping the mean distance from a fix ttu#ss than a maximum acceptable
valueEmay. Clearly, ift ¢ M thenEmax > 15(p: t) > 0 otherwise there will be no solution.

MAXIMUM IGNORANCE

We have found a path to ignorance so let us dare to walk the walk.

Theorem 3 Let

Omin = inf {0 > 0:Z(at) = / L+ avis(p:t)] v dV < o} (20)
Im

Then, fora > omin, when O= {M} the (6, v)-ignorant prior at level Z « is,

T 1 _1

o = Zia Lol (21)
Proof Impose the normalization constraint and use (16) to weiter- (A/v) [ 7 = [.Z with,

1-v v
X:Z"algﬂ+g+if id £+&

v 1-v 1-vv v
where we have replacaxwith Z¥a. Thus,

oL _ 0 =" - [1+l+ZvavI5]‘%
on [0)

which coincides with the normalized density (21) wher- Z¥ — 1.
Q.E.D.

At this point the reader is encouraged to praise the author for his choice of notation. All the symbols in (21)
are statistically and geometrically meaning-full. The left hand side of (21) is a Radon-Nikodym derivative. The
right hand side is a normalized scalar density field ddeiSeveral families of prior distributions that are routinely
used in practical applications, as subjective priors, are special cases of (21). Hence, equation (21) may provide an
objective justification for their practical use. In particular, equation (21) includes the family of multivariate Student-t
distributions when e.gMl is a location model in the exponential famiy,c {0,1} andv € (0, 1]. For this reason we
may think of (21) as a generalized-t family. The case {0,1} is obtained from (21) by taking limits. As — O,
we obtain(z* /@) — exp(—alg). Thus, equation (21) includes all the entropic priors as the speciahcase and
5 € {0,1}. The (0,0)-ignorant priors include the stand&rtamily of conjugate priors for the exponential family
likelihoods (see below). The case= 1 can be thought as a generalized multivariate Cauchy. Jeffreys’ priors are the
casex = 0 but theorem (2) (see the paragraph right after it) shows that in some cases there magphe-ahbeyond
which the solution is meaningless. A, > 0 may be needed eventie M for some models with infinite volume
or with unbounded densities, in order to assure that the prior is normalizable. All the traditional maximum entropy
distributions are also included as the lirit— co.

IGNORANCE IS NEGATIVE FREE ENERGY

LetZ =2Z(a,d,v,t) be the normalizing partition function for the family of ignorant priors (21), i.e.,

zz/ [+ avis(p:t) ™7 dV. 22)
M

2 Only if they are interpreted as scalar densitiesvbn
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Definition 2 (Free Energy) The function F= F(a., 8, v,t) given by
F =—logZ (23)
is the free energy associated to tt& v)-ignorant prior (21).

We show that the actual minimal value of the action at the opt{®al)-ignorant prior is an increasing function of
the free energy and it is exactly the free energy whenO.

Theorem 4 Let the model M and the ignorant prior be normalized, ifew = [ 7* = 1. Then the minimal value of
the action that (21) minimizes ig™* given by,

1
o* = ;(1—e*VF)+v|1,v (24)
Moreover,
lima* = F (25)
v—0
lim 7" = 1-e " +lo (26)
V—
(27)
Proof From theorem (3) we have,
G =2 <lg>+l1_y (28)

using (21) and the normalization assumptions we compute,

o /()

1 ZV )
- v(l-v) B v(1-v) /[1+(XV|5]75
= v(ll—v) v(]_z_v)(1+av<|3 >) 9
substituting (29) into (28),
o= gy (A<l )
- V(ll_") {1- (L+ Ve ~ |1—v]eVF)E*vF}

solving for.«7* we obtain (24).

Q.E.D.

Theorem (4) establishes a connection between amount of ignorance and free energy that naturally prompts us to ask

new questions that theorem (4) is unable to answer. For example, (24) suggests, but it does not prove, that the optimal

action for ignorancer™* is always an strictly increasing function Bffor all v € [0, 1]. We can only deduce from (24)

and (25) thater* is increasing inF for v € [0, ] for somee > 0. A more detailed analysis ®f_, as a function of

F seems to support the conjecture that is increasing irF for all v € [0,1]. A final proof is not available at the

moment. No proof is really needed if we change the problem a little... if the mountain doesn’t come to Mohammed...
The problem, | believe, is our original definition for free energy (23). Let us look into the explanation of the

traditional thermodynamic quantity by means of statistical mechanics. The phenomenological concept of free energy

A=E TS as originally defined by Helmholtz, is related to the statistical mechanical concept of sum-over-states (i.e.
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partition function)Z by the usual formulad = —kTlogZ but only whenzZ = zne—E”/kT i.e. only when the partition
function is the normalizing constant of a model in the exponential family. But our fami|§ of))-ignorant priors is
not in the exponential family unless= 0. This suggests redefining free energy as the optimal value of our action for
ignorance, in which case, ignorance is negative free energy by definition!

Itis intuitively clear that ignorance is the other side of the coin of information. We should expect something like

Information 4+ Ignorance= O. (30)

We know from Shannon that negative entropy is information. Theorem (4) shows that, at least @gnegative free

energy is ignorance. Should we then expect the sum of the two to give the whole glass of knowledge?. What is the
whole glass anyway?. Shouldn’t the whole glass change somehow dynamically? For otherwise how are we going to
be able to account for true evolutionary innovation?

IGNORANCE IS SELF-ADJOINT 3

Let us denote by (pt) the right hand side of (21). If we assume thatM then we can regard(p|t) as a function of
two arbitrary distributions itM. Let us also consider an arbitrary smooth relabeling of the elemeMs ©hus, each
distribution inM has two names = p(q) andq = q(p). Also, each distribution iV has two roles that it can play. It
can act as the truthor as justp. We denote the role-flipping operator with a hat on top of the name. Hence,

7(plG) = [L+ avls(p: @) v (31)

denotes thé€d, v)-ignorant prior in thep-coordinates given truth fepresented in thg-coordinates. Since ignorant
priors are scalar functions which are invariant under relabelings we have,

n(pld) = 7(q[P)- (32
Define the operation afoordinate transposition

(p,q) — (a,p) (33)
that defines the transposemfs,
x' (plg) = 7(alp) (34)
and define also the operationtafith conjugation
p—p (35)
that defines the conjugate ofas,
(p|d) = 7(pla). (36)

If we define the adjoint ofr as its conjugate transpose and we denote it hythen using (32) we obtain,

7(plG) = 7" (dlp) = "(d|p) = 7 (| ). @7
Soz = z' which is our definition of self-adjoint.

3 WITH RESPECT TO THE OPERATION OF TRUTH CONJUGATION DEFINED IN THE TEXT
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IGNORANT PRIORS ON §-CONVEX MODELS

A §-convex set of unnormalized distributions is defined, as igatoperties are, by looking at itscoordinates. Itis
o-convex when the set of tiecoordinates of its members is convex as a subset of the Banachispacgtraight lines

of §-coordinates aré-geodesics so a s8tis §-convex iff given two points ir§, the delta geodesics connecting them

are included irS. Models which ared-convex, have the remarkable property of being able to represent truth faithfully
with one of their members. But in general there is a price to be paid. A nibadivays entails a compromise between
simplicity (small, computationally tractable) and accuracy (big, complex). There is in general no warranty that the true
distributiont(x) is in M. As the following theorem shows, when the modefisonvex, we can repladeZ M by its

(1— 8)-projectiong’e M without missing a bit.

Theorem 5 Let M be closed (in the Hellinger topology) adeconvex. Letr(plt, o) denote the §, v)-ignorant prior
at levelo when the true distribution is t. Then,

n(plt, o) = 7(p|q, &) (38)
wherep is the uniquél — §)-projection of t on M, i.e.,
I s(t:a) = pei,\f/}'lfs(t 'p) (39)
and o
YT Itaviz§:t) (40)

Proof Use the generalized law of cosines and generalized pythagoras to show thht-thg-projection oft on a
closeds-convexM, exists, it is unique, and belongs k. Just as it is the case in a Hilbert space (see Amari85 p99
theorem3.9). Now recall tha¥ is J-flat for all 6 so the(1— &)-geodesic in% connecting to the projectiomye M

is orthogonal to thé-geodesic connectingtd an arbitraryp € M. Thus, by generalized pythagoras,

ls(p:t) =ls(p:a)+15(4:1). (41)
Replacing (41) in the formula for the ignorant prior (21) and sticking to assumption (1) we have,

_1
v

z(pt,a) = [A+avig(G:t)+avis(p:q)]
= [L+avis@:)] ¥ [1+avis(p:g)
= a(pld.&) (42)

Q.E.D.

Equation (40) is interesting. It quantifies the sticker price to be paid when replaging with § € M. It is clear
that o measures, the amount of information in the ignorant prior. The smallex thige closer the ignorant prior is
to the uniform oveiM. Now, equation (40) is telling us that if we want to guésgath some distribution irM we can
do so. Prior and likelihood will stay the same and therefore the inferences will be exactly the same. However, the new
prior needs to be less informative about the projected truth in order to be able to match the original. On the one hand
equation (40) confirms the obvious: Information abiistworth less the farther aways from M. On the other hand,
equation (40) provides a precise quantification that, as far as | know, it was not known before. For exarngld, if
andv > 0, then as we collect more and more information alicgd thate increases@ approaches monotonically
from below, the numbefvis(G:t))~1 > 0. Equation (40) also tells us that= 0 is very special.

IGNORANCE ON 6-FLAT MODELS

Models that are intrinsicall§-flat, admit dual geodesic coordinate systems (see (11),(12), (13)), and they are obviously
d-convex. Thus, theorem (5) is applicable. We have,

Theorem 6 Under the conditions and notation used in theorem (5). If Mb-f&at then, in thed-affine coordinate®,
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(0]6.6) = [1+av {(w(8)—y(8))—(6—6)-7}] (43)
and in the(1— 6)-affine coordinates,
(IR, &) = [1+&v {(o(n) — 6(7) — 8- (n—7)}] (a4)

whered = 6(7) andf = 1(6) are the coordinates af € M.

Proof Let p = pg and use (13) to write,

I5(p:8) = 15(6:7)
= YO +o() 70
= (¥(0)-y(8)~7-(6-8)

the last equality follows by noticing that and 6 are the coordinates of the same pajnand thusl5(é :n)=0.
Replacing into the ignorance prior given by theorem (5) we obtain (43). To obtain (44) just notidg(that)) =
l1-5(6:m)
Q.E.D.

A simple, but useful, corollary of theorem (6) is,

Theorem 7 Under the conditions of theorem (6) we have,

<[k

(616, &) = [1+aw||e—é||§]_ (1—¢) (45)

wheree = o(||6 — 6 s) and||- || denotes the norm induced by the riemannian metrig.at

Proof The result follows at once by expanding6) in a Taylor series abouf, using (13) and (11) and replacing into
(43).

Q.E.D.

_ The previous theorem shows that Swalar densitie®f ignorant priors ord-flat models are approximated around
6 by multivariate Student-t distributions centeredain the manifoldM. Recall that the (unnormalized) density of a
Student-t withd degrees of freedom is,

X2 Tz
T = |1+ (46)
and matchingl to v we obtain,
2

d= v 1 (47)

The approximation (45) becomes,

~27-1 a2—v)||6—6|;

[1+avile-8l3] "= l1+ ( )cU 9] (48)

The extra facton= &(2— v) has a simple interpretation. Itis the equivalent number of virtual observations supporting
the prior since it can be thought as a factor of the metric, and the metric (Fisher information) is additive over
independent observations. Using (40) we obtain,

a(2-v)
1+ avlg(G:t)

| find equation (49) intrinsically cool in the way it relates geometric, statistical and information concepts. It increases
asv decreases from 1 to 0 so that,

fi= (49)
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a A
1+als(g:t) shs2a (50)

In general, when € M, i= «(2— v) andri= « only whenv = (1+ als(§:t))~L. In particular,"= a whent € M

andv = 1 as we shall re-discover below.

As a final comment we mention that one should expect theorems (5, 6, 7) in this section to remain useful (as first
order approximations) even when the models are not exéetlgt. A complete perturbative analysis for a general
curved modeM involves higher order covariant derivatives and the modifications will surely coataurvature
terms. | hope to be able to continue work on this problem in the near future.

IGNORANCE ON EXPONENTIAL FAMILY MODELS

Exponential family models are intrinsically 1-flat and therefore also O-flat. However their 0-coordinates do not form
a flat manifold. The situation is just like the canonical example of a cylinder imbedded in euclidean flat space. The
cylinder curves but it can be smoothly unrolled so its intrinsic geometry is not different from the geometry of the plane.

The following theorem is well known. Given its practical importance we provide a complete proof. It also makes a
nice concrete example of flat models and the use of the formulas introduced in the 1G overview.

Theorem 8 Exponential family models are intrinsicalliflat. The natural parameter i8-affine and the expectation
parameter isl-affine. Their scalar potentials are the negative free energy and the negative entropy respectively.

Proof In the natural parameté, the normalized likelihood of an exponential family model with vector of sufficient
statisticsc(x) is given by,

Po (x) = =¥ (51)
wherey(0) is the negative free energy,
w(6) = log / 6 gy (52)
This is in fact the scalar potential satisfying (10) since,

61(8) = —Eo(2d;1) = 49, w(8) (53)

as it can be readily checked by taking derivatives of the 0-coordinates, i.e. the log likelihood,

I = 6-c(xX)0—y(0) (54)
al = G(-ayo) (55)
aiaj| = —8.8,— I[I(G) (56)

Taking expectations on both sides of (55) we obtain the dual 1-affine coordinates as the expectation parameter,

M = ay(6) =Eg(ci(x) (57)
The Legendre transform of (52) gives the other potential as,

o(n) = 6-n—-y(6) (58)
= [1e09- 6~ (e)e ) dx
6(m) = [ pa(x)logps(x) dx (59)

We notice also that,
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5 _ om _omoel o6l
KT One 961 Iy — Ik
where we used (57) and (53) for the last equality. This shd@lg'dn = gi* to be the entries of the inverse. Thus, if
J'= % is the tangent vector in thg-coordinates, we have

<9",0j >=< g*ok,0; >=g*ayj = 5| (60)
which is a constant (either 0 or 1) and we have,

. 1. 1 /1 1
0=d < a',aj >=<[k 8',8,- >4+ <d', Ok (9] >= g'm (rkmj + rkjm)
from where we deduce that,

1 1
Ckij (6)+ Tkji (8) =0. (61)

Now we have all the ingredients to show that exponential family models are indeed intrinsically 1-flat by showing that
in the 6-coordinates all the 1-connection coefficients are zero. We have,

1
Tijk= Eg(didjlol) +Eg (il djlokl) (62)

The first term on the right hand side of (62) is shown to be zero by just using (56). The second term is also zero as we
now show,

Eo(d1919d) = /&ipeaj|ak|
39
= /3ipe[ : kpe—ajakl]
Pe
[ a13i0cpe = [ l6:x) — a(©)10;kpe

= /Ci(X)ajakpe = ajak/ci Po = didjoky(H)
di0Qjk(0) = i < 9}, >

1 1
Fij (6)+ Fikj (0)
0.

Where we have used (61) for the last equality.
Q.E.D.

(0, v)-ignorant prior on exponential family models

As we have seen, exponential family models g0¢l)-flat and therefore everything that was shown above, for
general convex and flat models, holds in particular for members of the exponential family. Theorem (6) gives the
ignorant prior ford € {0,1} and arbitraryv € [0,1] in terms of the two potentials: the negative free energy, and the
negative entropy. We have

Theorem 9 The(0, v)-ignorant prior at levele is given, for models in the exponential family, by

<=

m(0]7,&) = [1+av(y(0)+¢() - 6-1)]" (63)
the scalar potentialy is the negative free energy (52), the dual scalar potenti the negative entropy (59), and
are thel-coordinates of.
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Proof (trivial).

When data is available the natural estimate figrto be used in (63) is the MLE, i.e. tiethat makes the observed
x most likely. If follows from (55) that the MLE igj = c(x). We have,

Theorem 10 When M is in the exponential family, the scalar posterior density based on data x a@l theprior
with 7] = ¢(x) can be written as,

efs
(6%, c(X)) = T+ avev (64)
where s= 5(6,x) > 0 defines the surface of equiprobability given by,
v(0)+¢(c(x) —6-c(x) =s (65)
Proof Use bayes, theorem (9) and assumption (1).
Q.E.D.

Theorem (10) shows a remarkable property of {Be’)-ignorant prior for exponential family models. The prior and
posterior equiprobability surfaces are the same. It also suggests a simple algorithm for sampling the posterior: Pick a
surfaces with probability proportional to the right hand side of (64) then sample uniformly from the swsfiefined

by (65).

Conjugacy

Until around 1990, conjugate priors for models in the exponential family were essentially the only ones being used
in multidimensional problems. The well known PCMCMC revolution changed all that.

With conjugate priors, computation of the posterior distribution reduces to plug-in formulas for the posterior param-
eters that involve only the sufficient statistics of the observed data. Conjugacy was invented to avoid multidimensional
integration over the parameter space. Essentially to keep it simple. As we show here, these priors turn out to be ig-
norant provided you think of them as scalar densities on the mariiolde. as densities with respect évy (see

(6)).
Theorem 11 The(0, 0)-ignorant prior over a model M in the exponential family of distributions is conjugate.

Proof Exponential family models ar@, 1)-flat. In the standard dual coordinates for flat models(th@®)-ignorant
prior is given by (43) whew — 0 as,

7(0]8, ) = gx8-0-av(6) (66)

where we have used the fact titat= o sincev = 0 (see (40)). On the other hand the normalized likelihood is,

Po(X) = elc(9-6—w(6)) (67)
Where,c(x) is the vector of sufficient statistics and,
w(6) = log / &< gix (68)
Thus, the posterior is,
n(6]%,0,0) = ((c(x)+ab)-0—(at+1)w(6)) (69)
this is in the same family as the prior and therefore it is conjugate.

Q.E.D.
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0-IGNORANCE

As we have seen, ignorance involves a trade off between uniformity and independence. In this section we show that
independence by itself is enough to define a simplified notion of ignorance over a Mollreover, the previous
notion of (8, v)-ignorance at leved coincides with this new version wheéd,v) = (1,0).

The idea is straight forward. Pick one of the available measures of separationsjemy.the space of joint
distributions of(x, 8) and measure th&-deviation betweem(x,6) = p(x|0)x(0) = pr and an arbitrary independent
modelt(x)n(6) =tn. The quantityls(pr : tn) measures closeness from the dependent to the specified independent
model. We have,

Theorem 12 For normalized p and t (i.e., whefip = [t = 1) we have,

ls(pr:tn) =ls(x:m)+ [ 15(p:0)mn*? (70)

Proof Just write,

s1-8)spritn) = [ [[opm+(1-8)m—patetont?]

- /[6n+(1—5)n—(/p5t15)7r5n18} (71)
- /[5n+(1—5)n—n5n1*5+5(1—5)|5(p:t)nﬁnH (72)
- 5(1—6)I5(7r:n)+5(1—5)/lg(p:t)n5nl’5 (73)

where we have used the hypothesis of normalization to obtain (71) and (72).

Q.E.D.

If a is a positive integer we denote simply p§f andt® the corresponding joint distributions afindependent copies
of the data vectox, i.e.,

o a

p* = u p(x|6) and t* = ut(x;) (74)

Thus, for normalizeg andt we have,

Ia(p“:t“>=@(1—{/p5t15}a) (75)

we use the right hand side of (75) as the definitiohy¢p®* : t*) for anya > 0. By taking limits, it follows immediately
from (75) that,

ls(p* :t*) = lg(p:t) for 6§ € {0,1} (76)
Using (70) together with (75) we define,
Definition 3 (relative §-ignorance) We say thatt* is d-ignorant at levelx > 0 relative ton,M and O iff
" =argminls(p*m 1 t%n) 77)
re0
We have,

Theorem 13 When O= {M} the d-ignorant prior at levela relative ton is,

*

T =181 8)15(p" %)) 75 (78)
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Proof Use theorem (12) to write the action As” thend.#/6x = O gives (78).
Q.E.D.
The following theorem is also immediate,

Theorem 14
l1(p*7 :t%w) = o/ (7; o, 1,0) (79)
Proof Replaced = 1 andv =0 in (16).
Q.E.D.
It therefore follows that,
T _ oo [plog? (80)
0}

is both a(1,0)-prior and a 1-prior at levek. Notice that it is also possible to switch the positiong®fwith t* in (77)
in which case th€0, 1)-prior coincides with the new O-prior at level

EXAMPLE: (0,0)-PRIOR FOR MIXTURES OF GAUSSIANS

The general theory presented above has many applications. To demonstrate the utility of our new understanding of
statistical ignorance we work out all the details of a concrete example. In this section we comp{@herior

for the parameters of a mixture &fone dimensional gaussians. We assume be a given known positive integer.

A simple parameterization is then given By= (u,c, ), whereu = (u1,...,ux) € R¢is ak-dim vector of means,

o = (01,...,0k) € R is ak-dim vector of standard deviations, amd= (@y,..., ) € A1 is the vector of mixing

weights in the(k — 1)-dim simplexAk—1. Thus, our hypothesis spabkis a % — 1 dimensional manifold.

The Complete Likelihood

The elements of our mod@®ll are the probability distributions for the data vect®rz) indexed by the vector of
parameter®). We assume that the complete détaz) is generated by first picking a labele {1,2,...,k} with
probability vectorw and after that, choosingby sampling from a gaussian with meapand standard deviatios,.
Thus, forxe R, z€ {1,2,...,k} and® = (u,0,0) € R x R x A1 = © we have,

p(x,26) = p(Z6) p(xz6)
_ 1 _ (X— z)
= e, eXp{ 207 } ®D
Hence,
M= {p(x,20): 6 € O} (82)

Computation of dV on M

In order to obtain an ignorant prior d, relative to the standard lebesgue measure, we need to first find the volume
element of the manifold/. To use (6) we only need to find the Fisher information maltf) and its determinant
|1(6)|. We proceed in the standard way by computing first the log likelihb@gis then their second derivativesd; |,
and finally expected values to obtdie= (gjj) = (—Ee(d;9;l)). The log likelihoods are obtained from (81) as,

I = 1(6)=logp(x,20)

(X— z)?
202

= logw;— —Iogcz—%loan
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k (X*,LL')Z 1
= logwj — ——>" —logo,— =log2r » 1(z= j) (83)
J-Zl{ . 207 ‘2

where we have used the indicator functiqz % j) which takes the value one wher= j and zero otherwise.

u-derivatives

From (83),

Al (x—p) . 92l 1(z=}) o;

— = 1(z=j) and — =— = Ouu = —5 (84)
i of uj Hiki T o2

Notice that they, , terms are all zero since the first equation above does not explicitly depend on plagameters.
We show below that thg, ; are also zero.

QO
N
=N

o-derivatives

Again from (83) we compute,

dl (X—[Jj)z 1 . 92l —3(X—uj)2 1 .
J0;j { 6j3 Oj (2=1) 8crj2 Gj4 + O'jz (2=1) (85)
3 1 Za)j

The first equation in the line (85) does not explicitly depend on any otihmarameters nor does it depend on any
othery; except foru;. Thus, all of the off-diagonal termgg; ,, = 0 fori ~j andgs » = 0. We also have,

_E al dl
Quj,0; = FEeo TLLJTGJ

_ & <<Xuj>3<x3uj>>

5 :
Oj Oj

- 0 (87)

w-derivatives

Once more we compute using (83) and noticing that,
k—1
a=1-— Z j (88)
j=1

and obtain,

o _1e=)) 2=k o j=12... k-1 (89)
8(0,- j Wy

Hence, it follows from (89) that all the mixed entries of ty@g, = gws = 0. The only non zero entries are,
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Goo, = E{<ui?0_1%;m)<1%;j)_u2:©)}

_ (z=1)1(z=]j) , Uz=Kk)
a E{ Wi 0] " }
Sii 1
= é+@ (90)

whered;; = 1(i = j) is Kronneker's delta.

Fisher Information Matrix

Collecting the above findings we can see that Fisher Information matrix is block diagonal,

l, 0 0
1()=| 0 Is O (91)
0 0 Iy

wherel, andl; arek x k diagonal matrices with entries,

r o 9 - 20 -
0—1% 0 6—121 0
0] 20p
o %
Iy = and Is = (92)
: 3 : 2
L k J L o

andly, is (k—1) x (k— 1) with all non-zero entries,

N 1 1 17
(] Wy Wy Wy Wy
1 14,1 1 1
% w ooy oy o
lop = (93)
1 .01 1 1
L Wy Wy wk—l—i_wk i

Using (6) and (91) we obtain

oV = /|1u lo] 1| dut do do (94)

From (92) and (93) the determinantg| and|l;| are just the product of their diagonal entries. The only complication
that remains is the determinajhg,| that we compute as follows. First subtract the second column of (93) from the
first column to obtain a matrix identical to that given by (93) except that now the first column has erimigs 1
—1/am, and zeros down from the third to tijke — 1)st row. Call the determinant of this nefk— 1) x (k— 1) matrix
Dy_1(@1, @2, ..., o). We have,

||a)| :Dk_l(wl,a)z,...,an() (95)

since the two matrices differ only by an elementary column operation that does not change the determinant. Now
expanding the determinab_1 about the first column, that has all zeros except for the first two entries, we obtain the
recursion,
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1 _
D201, @) = £-Dic-2(@2; ., &) + (0203.... ) ! (96)

where the second term on the right hand side of (96) is obtained by multiplyimg times the determinant of the
matrix obtained from (93) by erasing the first column and the second row. This co-factor is brought into an almost upper
triangular matrix with main diagonal entries given byal, 1/ 3,1/ wa, . ..,1/wx_1 by subtracting the previous to last
column from the last column, the second to last from the previous to last, etc, until the first column. The determinant
of this almost upper triangular matrix is shown to be the product of the main diagonal by expanding about its first row
that contains only zeros except for the first entfyil

From the recursion (96) we easily show,

Theorem 15 Fork=2,3,...

k
Dia(o,... ) = D2 (©7)
[Mj=1j
Proof By induction onk. It is true fork = 2 since,
1 1 w1+
Di(@r, ) = (- + ) = =2 (98)
o W2 w12
If it is true for k then using (96) and the induction hypothesis we have,
1 -1
Dk(@y,...,ax1) = ale—l(wzwua(DkJrl) + (o1 @xi1)
135 1
A AT s e T
K+1 .
j=19j
= == (99)
M1 o;
Q.E.D.
Finally, from (92), (93) and (97) we write,
k a)l/z
dV = [1—5 du do do (100)
Mo
Entropy
Assumingt € M the unnormalized density (with respect to lebesgue meakjref the (0, 0)-prior is,
(0], 8) do = =@ (0:0) gy (101)
where,
1(6:6) =10(6:8) =E; { log p(x,26) (102)
0 p(x,26)
The distribution inM that represents truth has parameter,
6 = (M, s,W) = (My,...,M,S1,...,SWi, ..., W) (103)

We compute the entropy (102) by first conditioning on a valuearid then taking expectation overi.e.,
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1(6:0) = ZEXZ{Iog +IogM} (104)

k <
yw {Iog +log J ) 2)2+i—;} (105)

where in (104)N(x; a,b) denotes the usual density for a gaussian distribution with raesard standard deviatidm
Combining (105) with the previously obtained formula for the volume element (100) we obtain,

R K oW
0|, 6 :|‘! ———(uj —mj)?
n(0]a,6) L exp{ ZGJ-Z(HJ J)}

-of“w" 2 exp{ —awz"sjz} (106)
20'J-

_ wjawﬁ%

Equation (106) shows, | believe correctly for the first time, t8g)-prior for mixtures of univariate gaussians. It is
clearly integrable and remarkably simple. The mixing weight®llow a Dirichlet, the vector of standard deviations

o has independent components that follow inverse-Gamma distributions, and the vector ojineamditionally on

o, also has independent components that follow gaussian distributions. Independent samples from this distribution
can be obtained exactly, without the need of asymptotic Gibbs sampling, with very efficient procedures in the public
domain.

Posterior

Model (82) becomes very useful when assuming that the actual observed &ata38 = (xg,...,%,) such that
(X1,21),-.-,(Xn, 1) are independent samples from a distribution in (82) but the vector of I2belgz,...,z,) is not
available, it is missing. The accurate identification of the vector of missing labels is often of great practical importance
with applications scattered all over the spectrum of modern science and technology. Estimation of the missing labels,
as always, is done by simply wiggling the bayesian wand, i.e., applying bayes theorem. Bayes theorem gives the
chances of what we don’t know given what we do know. There is a caveat: A model (i.e. a hypothesis space) and a
prior on the model are needed. In the case of mixtures of univariate gaussians we now have all the ingredients.

The Complete Posterior

If we knew the vector of label®’ then the unnormalized complete posterior would be,

2(6)x", 2", at, ) = 7(6], 6) ﬁ“’ﬁexp{—w} (107)

2
oy, 203

Letk; be the total number of labels that are equaj,toe.,

n
ki=> Uz =]) (108)
3
Grouping common labels together we can simplify (107) as,

D ox
k

K @
n(6]x",2", 0, 0) = 7(6)|ct, 6) I_I, { Z X — Uj) } (109)
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Bringing in the prior (106) we obtain the complete posterior as,

k

n 1
7r(6|x",z“,oc,t9):JD1 exp{ % Z[awl +Z X — Uj) }

.G;OCW]‘727KJ { 25% } (110)
J

ow;+kj+3
o) jTKi+32

Again, independent samples @fwith distribution (110) can be obtained exactly, without the need of Gibbs iterations.
We factorize the complete posterior distributionfoés,

(6) = (u|o) (o) (@) (111)
Thus, to sample a vect®r= (i, o, ®) from (110) we first produce with,
3 3 3
a)N@(aw1+k1+§,awz+k2+é,...,ocwk+kk+é) (112)

where 2 stands for the Dirichlet distribution. Then we sampidrom its unconditional distribution obtained from
(110) by integrating oven. We collect the resulting distribution in the following theorem,

Theorem 16 In the complete posterior (110) the distribution of the veetas,

-1
n(o|x",2",a,6) |'| o; Sowi kL exp{ [aw,sZ+AJ]} (113)
where,
oW
A=k |[VZqi—2"0 (x 114
j = Kj J+awj+k1( m,)] (114)
and
1 _ >
V- 3 ) () 115)

and we are using the notation,
z Xi (116)
Proof Tedious but straight forward. We have,
(o)X, 2, o, 6) = /n(e\x”,z”,oc,é) du
Looking at (110) we see that we need to evaluate the integrals,
Jj = /exp{—;;[awj (1 —m)Z+ 5 (% —Hi)z]} du;
i 4=]

Expanding the squares, collecting terms involving completing back the square, performing the gaussian integral,
and simplifyiiing we obtain,

J —L exp ;1A
! w/OCWj—I—kJ' 26j2 J
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Q.E.D.
Also,

Theorem 17 With the notation of theorem (16). For5 1,2, ...,k let,

OthSJ2 + Aj 118
GJ = T ( )
If 71, 12,..., 7« are chosen independently with distributions,
7 N%(LW‘; L) (119)
where¥ denotes a Gamma distribution. Then the veetet (o1, ..., o) follows the distribution (113).
Proof Just change the variabl€3.E.D.
Finally, once the vectos is given, we sampl@ from the conditional distribution,
~ k ~ ~
m(ulo, X", 2", a,0) = |_|I N(uj; fij, 65) (120)
J:
where,
— 2
~ aw;jm; + kj Xj - GJ-
- dég=—"1 121
Hi awj + kj and o awj + kj ( )

This is the standard computation of the posterior distribution of a gaussian mean when the likelihood and the prior are
both gaussian.

Gibbs Sampler

To sample the actual posteriot6|x", «t, 6) we need to sample from the joint distribution(f, ") and discard the
labelsz". We use a Gibbs sampler to eventually sample vectérg') by iterating samples from the two conditional
distributions: The complete posterin(0|x",Z", «, 6), as indicated above, and the posterior distribution for the labels,
given by

n
p(2"6,x", @, 6) O p(xn,i”\e,mé):rlp(xi,zle)
i=

0 ﬁ(;’: exp{—w} (122)

20y,

Equation (122) shows that conditionally ¢8,x"), the labelsz;,z,...,z, are independent with probabilities, for
j=1,2,....kgiven by

- 1 o (% — )
Plzi = j|6,x"] = = —L exp{ — (123)
C Oj 207

wherec > 0 is the normalizing constant. Notice also, that estimation of the labels can be done by using the same joint
samples of 6,2") but now discardindg instead ofz". The observed” will be samples fronp(Z"|x", «t, 6).
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MODEL SELECTION

Having been presented with two alternative modé¢sandM, possibly of different dimensions, for the same vector
X' = (xq,...,%n) of observations, when should we choddeover My?. This is a decision problem. Once we choose
a loss functiorL and prior probabilities for the two alternative hypothebsandM the optimal decision is the one
given by bayes rulechoose the model that minimizes the expected loss conditional on whatever is known.
The optimal values of the invariant actions for ignorance that we have found in this paper provide the decision maker
with a natural class of loss functions. For fix valuesxpb andv we can quantify the loss of deciding to use maddel
when the true distribution isby,

L(t,M;a,8,v) = oy = ou(n”;a,0,v,t,0) (124)

Thus, we have a collection of rankings for models. In the absence of any observations, when the true distribwgion is

choose mode\l overMo whenzy < < . We have possibly different rankings for different choices of the parameters

o, 8, andv. But these are only theoretical, ideal rankings, for they depend on the unknown true distribMflban

a vectorx” of observations is available it seems reasonable to estimate the unkhyfix"), e.g. with the M.L.E.,

in each model. The obvious question is: How good is that?. We show below that th& €ase- 0 is asymptotically

equivalent to the plain bayesian ranking, i.e. the one that chooses the model with the highest posterior probability.
In fact, given two alternative modeldy andM, observed data”, prior probabilitiesP(Mg) andP(M) and prior

distributions on the modelsy andny, the plain bayesian ranking chooddsover My iff

P(M|X") > P(Mg|x") (125)

By bayes theorem the posterior probabilities are given by,
1
P(MIX") = = p(x|M)P(M) (126)
where,Z is a normalizing constant independent of the maddelThe marginal likelihood can be expanded as,
pOCIM) = [ (¢ 61M) aV(6)
[ pteimypocie.m) avie)

[, mte) [ 20 V(o 27
JM =
_ /M i (p)e"n(P) dv (128)

and by the standard central limit theorem,

La(p) = rll_ilog p(xi)

_ / t(x)log p(x) dx+ %N(O, 1) +o(n~%2)
_ flo(p:t)Jr/t(x) logt(x) dx-+O(n~Y/2) (129)

Thus, wherP(Mp) = P(M) replacing (129) into (128) we obtain that the plain bayesian ranking will choose among
the alternative models thé that minimizes,

—logP(M|X") = —Iog/ v (p)e"lo(PH+O(n™ dV+(constan) (130)

This shows that for large, neglecting lower order terms and the irrelevant additive constant, the rivbdeth the
highest posterior probability is the one that minimizes,
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S = —log / 7w (p)eMo(PY gy (131)
M

WhenM has finite volumé/ < « the most ignorant prior ol is the uniform (relative taV) given byzy(p) = 1/V
and we have,

L = Al g=ns=v=0 (132)

WhenM has infinite volume, we replace Jeffreys prior with an ignorant prigre= [1+ avl5]‘1/v with o — omin.
The resulting objective functioyy can still be thought as any; if we replace in (14) the unifornw with its
approximationmy.

Ignorant Razors

The previous discussion suggests interpreting the optimal values of the actions for ignefgprsemeasures of
model accuracy and complexity. A general family of Occam’s razors is given by,

e PO avis(pit)] VY dv

ZM 133
(M) Jull+avig(p:t)]-Y/vdv (133)
The caser = 0 has the simplest form,
Y e (a+B)ls(pt) gy
ZM) = e 0 v (134)
obtained wherx = 8 ands = §. In this case,
* ZM(a+ﬁ)
oy = —log 72,\4(05) (135)
where,
Zw(a) = /M e la(Pt) gy (136)

By imitating Balasubramanian’s paper we produce a perturbative expansion of the normalizing constants of type (136)
aso — . We should expect to see the effects of igeometry explicitly in this expansion since theconnection
coefficients and its derivatives are obtainable from the Eguchi relations introduced in the IG overview.

With the help of a parameterization we write,

Zu (@) = / e %E(®) g (137)
where,
E(6) = l5(6:t)—a tlog,/detl(6) (138)
= J(6)—a 'F(6) (139)
Let us now define,
g: arg rginlg(e 1) (140)

Now recall thata is interpreted as a continuous number of apriori independent observations from the true distribution
t (see (79)). Hence, the central limit theorem provides a justification fax-dependent scaling of the variable of
integration. Letr = o~ /2 and define the new variable of integration,

0= Va(0—68) < 0=61rd (141)
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so that,

8
Zu (o) = o /2 / e @E(+10) g (142)

wherex is the dimension of the manifold model. Considering the exponent as a functiorr af 0 and expanding
the functionsl) andF in a Taylor series about= 0 we get,

S S © rj 00 ri
E = E S Y L By ZZfF L OFL M
(6 +r¢) (9)+J§: J.!J“l w0 oM —r 2 i s 59 )

S a_l 1
= E(0)+ 5 Juwt 9"+ 1G(9) (143)
where,
g = aﬂl-.-(9,1j|5(9:t)|9:(s (144)
Fupow = 8#1"'8#i|:(9)| _2 (145)
A 1 _ 1 .
G(¢p) = _ZOF'/Z {(I +2)!Jll1"‘lli+2¢”l M2 — ﬁFﬁl‘“lii oML PHi (146)

and we have used the fact that whiea 1 the rhs of (144) is zero. It is easy to verify that equations (144) and (145)
are directly connected to thiegeometry. In fact, we have

1

il s = 9il6) (147)
I o 14 )

Jijk|t:g = Tijk (8)+Tki(6)+Tij(0) (148)

Fi = riji(g) (149)

Fio = Th(8) =l (8) (150)

Equations (147) and (148) are an alternative form of the Eguchi relations that can be checked by straight forward
computation of the derivatives. Connection coefficients appearing withéubm top are the metric (Levi-Civita)

6 = 1/2 case, and partial derivatives in (150) are indicated by the sub index following a comma. Obviously (150)
follows from (149) but (149) is not obvious. It is however well known and often left as an exercise in general relativity
text books. For the sake of completeness we provide a proof in the following theorem.

Theorem 18 For any metric ¢ with associated connection coefﬁcieﬁfg.we have,

dclog/det(gij) = (151)

Proof The metricG = (g;j ) is symmetric and positive definite. Thus, there exists an orthogonal nrare PTP=Id,
with G = PTDP andD a diagonal matrix with positive entrigis. Hence,

dlogy/det(gj) = =dklog detG= %&k (Zlog)q)
|

- 55 lak)u _ 1y D~ !aD
T A

NI

=

2 2

=

1
= St (P'DT'PPTADP) = Str GG

N
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1 .
= Eglmgmi,k
im 1 1 im
= 9" (Gim.k + 9mki — Oki,m) + > {9™(Gim— Omki) }
= Tk (152)

where we have used the cyclic property of the trace, the definition of the connection coefm'(;j@ﬁsts%(gjk,i +
Oki,j — Gij k) and the fact that the expression within curly brackets is zero. This last fact follows from differentiating the
constant identity); (g™gmk) = 0 so that,

9™ (Gkim— Gmii) = (—9}129,) — (~g12g,) = 0

Q.E.D.
Now from the fact that,
Oy -+ Oy, &' = O gH . g (153)
it follows, by writing the exponential as a power series, that
eG(9) e—G(Dh)ehw" (154)
h=0

wherelp = (h,, ..., h,), andG(¢) is any multivariate series like (146). Thus, replacing (143) into (142) using (154)
and moving the derivatives outside the integral, we obfain,

6

I oo
Zu(a) = o <261/ detl () e*G(Dh>/e*%Jij¢l¢]+hk¢kdq) (155)
h=0
8. 8 (2m)<\ /2 1
= o /%501 /detl (9) e (W ( ) exp(shiJh;) (156)
det] 2 o

where the gaussian integral (155) was computed by noticing that if we leth, JX then we can write the integrand
as,

oo Laoetenet) = enplLayiedYouof ool )

exp{;J”hihj}exp{—;(q)i —m)J; (9! —mj)} (157)

Let us re-write (146) as,

0

G(9) = —_;a*‘/ww (158)

Using (158) and (156) we obtain an expansiorZgf «) to all orders. For example, if we neglect terms of order
and smaller we have,

G*(¢) G%(9)
2! 3l

1+ [ 2A0(9) + @ MAo(9) + o ¥/2Ag(9)] +

e = 1-G(¢)+ T

4 This is a very powerful trick that | learned from Balasubramanian’s paper. Notice however that equation (41) in that paper is missing a factor
—1/2in the exponent.
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=

L {aRR(0) + 207 m(0)A0(0)} +

%oﬁ/ 2p3(¢)+O(a™?) (159)

the terms within square brackets correspond to the term&ifp ) of order lower tharm =2, those within curly brackets

are fromG?(¢), and the last term is, the only other contribution of order lower t1af, from G3(¢)/3!. It can be

shown that the terms with an odd number of phi's, like the terms of ordet& ando.~%/2 will end up not contributing
anything when (159) is transformed into a differential operator and used in (156). Thus, for model selection, the choice
of §-geometry will appear in the terms of order?. Let us use the following convenient notation,

1
f = exp(ZJ”"huhv> (160)
m = Jh, (161)

Thus, using (159) we obtain,

eﬁG(Dh) f

+0(a?)

1
1+ at {Az(Dh) + A%(Dh)} f
h=0

2

h=0

1, . 1. _
—1 u ki
1+« {[Zriu,iT” - aJijleIJ ]+

1 0 y 1\2 i -
ST 3,rﬁLJile”"'+(3,> JiilemnT”k'm"]}+0(a ) (162)

where the first term within square brackets is frégand the second is fromf and,

THL--Mi 9h1"'3hif’h:o (163)

Applying the formulas); f = fml andam = J' recursively we obtain, after a long but straight forward computation,
that

Hi_ g (164)
ik gigk L gikgil 4 i ik (165)
TiHkImn - giigkgmny (11 similar terms) (166)

Substituting into (162) and simplifying we find,

o1
e C(Oh £ =1t S 'Si+ O(a?) (167)

where,
S§j =121, | = 3g M —3rf Y, — 12 Jjg I + 4 Jmnd ™ (168)

The above tensor is closely related to the Ricci tensor. As it can be readily checked (see MTW p.222, (8.51a,b)), the
Ricci tensor can be written as,

Rj =Tl +Tl T =Tl (169)
We can therefore write (168) in terms of the Ricci tensor as,
Sj =-12(Rj +Tij) (170)
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where the new tensdk; collects all the left-over terms. We can regard the above equation as the defining equation for
Tij. We expectlj; to have zero trace when the model contains the true distribution. More detailed computations will be
the subject of an upcoming paper. With this notation we can write once again (167) in the following more useful form,

1
e gl —1- & IR +T] + O ?) (171)

From (171), (159) and (156) we get,

—logZy(a) = alg((g:t) (172)
+glog% (173)
+%| ZZJ((Z)) (174)
—log (1— ‘%U” [Rj +Tij] +O(a2)> (175)

This formula provides a new measure of complexity for models whose volumes have been normalized. If the models
to be compared occupy different volumes in the space of distributions then we need to\additog fifth term to the
above formula. The first three terms for the case 0 have been previously obtained in connection to the so called
Minimum Description Length (MDL) principle, attributed to Rissanen. The genkase, and specially the fourth
term involving the scalar built out of the curvature connection coefficients, were previously unknown.

Each of the four terms of the above expansion has a clear interpretation. The leading term (172) measures the
accuracy of the modéll in terms of thed-distance from the model to the true distribution and increases linearly with
the amount of prior information (data). This first term ensures asymptotic correctness (consistency)}-as, i.e. as
more and more prior information is available. The second term (173) penalizes models of high dimension and encodes
parsimony relative to the amount of available prior information. It is linear in the dimenshaut logarithmic ina.
This term was first discovered by Schwartz in connection with the so called Bayesian Information Criterion (BIC).
This term does not depend @nin any way. The third term, constant &, encodes what Balasubramanian calls the
naturalnessor robustness of the model. It is a penalty on models that have few indistinguishable points that are close
to the true one, e.g. when the model looks highly curved from the point of view of the true distribution. The fourth
term (175), let us call i&, is the most remarkable for it has not previously appeared in the literature. Expanding the
logarithm and neglecting the lower order terms we have,

-

We remind the reader that the above quantities are evaluated at a special pjmtamely the closest point tain
the 6-deviation distance. Alsd depends on the true distributidas well.

WhenM >t

When the modeM is sufficiently large or informative, so that we can assume that it contains, or at least closely
approximates, the true distribution the action for model selection takes a simpler form.

5 L
In fact whent =9 we have from (147) thal! = ¢" and the terms (172) and (174) become zero. Hence,-as»

K o a1l .
—logZu(a) = 5 Iongn —log (1 Tg” [Rj +Tijl

> +0(a?) (177)
o—6

5
Now considerr to be any prior scalar density that peak®asa — . For example a natural choice is given by the
ignorant(§, 0)-prior,
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8
() = e *1a(0:0) (178)

For any such prior the action for model selection (177) can be thought as an approximation to the global action given
mod a2 by:

—IogZM(oc):gIog (%) — log (1—0621/M(R+T)7r dv) (179)

whereR is the Ricci scalar and is the trace offjj plus any term, which may depend amthat becomes negligible
around the peak. Notice that when comparing models with the same number of paraméterfirst term in (179)
becomes an irrelevant constant and the action becomes equivalent to the integral, i.e., the prior expe@®atidr).of

The practical utility of the new ranking procedures introduced in (179), (177) or the original (172-175) need to be
tested on real and simulated data. Preliminary computer experiments of the effect of the geometry for model selection,
just at the level of correct volume normalization in the MDL principle, are currently being investigated by Eitel Lauria
and myself. These experiments show that adding (to the MDL score) a simple approximation to the logarithm of
the total volume occupied by a binary bayesian network of a given structure never hurts. In fact the modified score
chooses the correct model in (on the average) about 30% more cases than the standard MDL score across a wide range
of structures and sample sizes. These results are encouraging but nothing is known, at the moment of writing, about
the actual performance of the new curvature term introduced in this paper.

AUTOMATIC MODEL PRODUCTION

In this section we show how the actions for model selection, introduced in the previous section, can be transformed into
actions for the automatic production of statistical models. The resulting theory seems to be completely unexplored and
extremely rich. What follows is just a very first attempt at describing what seems to me as an ocean of new statistical
guestions.

Simply put. Take the exp of (179) and elevate the obtained score to the statuésefsal rankingfor all the
unknowns, i.e., the dimensiok, the information metrigy; and the unnormalized priar, or equivalently its log
likelihood f, wherer = e f. WhenT = |Of|? and 7 = (2a)~! the obtained score is equivalent mod? to
minimizing,

7 :/ [e(R+ 10— 7] (477) /%" av (180)
M
over smooth function$ satisfying the normalization condition,

/ (4n) 2% dv =1 (181)
M

Perelman’s Action

In a recent pap@Grisha Perelman shocked the topology world with what the experts say may be a final proof of the
so called geometrization conjecture for three-manifolds. This implies the famous Poincaré conjecture. It is much more
famous now that there is a $1M prize for its préofWhat shocks this pedestrian statistician is that (180) is the action
that produces the flow of metrigg; () that is able to smooth out all manifolds and prove that topologically, spheres
are not doughnuts in any dimensions. | believe that the entropy formula for Ricci flows, that solves the presumably
esotericball # doughnutproblem has an statistical interpretation with the potential for unifying not just heaven and
earth but the mind with the moon. In the mezame,

5 seearXiv:math.DG/0211159
6 seewww.claymath.org
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Truth, time & temperature

time is cold Truth
and
Truth is hot time.
Red hot is a true first second
of love.
But all Truth is temporal.
Ergo, F$$3$.
that's true
capitalism.
Tistandr
T&tIST&T
Tist
andtisT
god save TT&T
god saverT&t
god save T&t
god save the t.
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