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INTRODUCTION

Infandum, regina, iubes renovare dolorem, Troianas ut opes et lamentabile regnum cruerint Danai; quaeque ipse
miserrima vidi, et quorum pars magna fui. Quis talia fando Myrmidonum Dolopumve aut duri miles Ulixi temperet a
lacrimis? Et iam nox umida caelo praecipitat, suadentque cadentia sidera somnos.

THE MAIN PROBLEM OF INFERENCE

From prior informationO and dataD = (x1,x2, . . . ,xn) = xn obtaina modelM = {Pθ : θ ∈ Θ} and a priorπ = π(θ)
onM.

With the necessary ingredients:(O,D,M,π) we can cook a bayesian omelet on a large enough computer and
instantiate,

Inference= Bayes+Computing

where Bayes stands for his theorem,

p(θ |D,M,O) =
p(D|θ ,M,O)p(θ |M,O)

p(D|M,O)
(1)

In what follows we simply writep= p(D|θ ,M,O) for the likelihood,π = p(θ |M,O) for the prior, andZ = p(D|M,O)
for the evidence.

The prior is half the problem

This paper concentrates primarily on a simplified version of the main task. We assume that a modelM is available
as part of the prior informationO. Our problem is to find the prior distributionπ overM. Hence, except for the last
two sections where we consider model selection, we assume thatM ∈O.

We want to find an objective mechanism for producing prior distributionsπ from explicitly stated prior information
O when the modelM is part ofO. Our only principle is honesty. We demand ourπ to be maximally ignorantabout
everything except what is explicitly contained inO.

IGNORANCE RELATIVE TO M AND O

To proceed, we need a concept of ignorance relative to a modelM and possibly extra prior informationO. Our proposal
is based on the trivial realization that ignorance is nothing but uncertainty about truth. A quantity designed to measure
the amount of ignorance contained in a given priorπ overM must depend on the location of the true distribution, in the
space of all distributions for the data. For the object of ignorance is truth; We are ignorant about truth. But ignorance
is not just measured by the proximity of the true distributiont(x) to the modelM. A small modelM far away from
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t is not ignorant about truth, it is very knowledgeable, but about the wrong thing. It is precisely incorrect. Our initial
task is to assess the amount of ignorance in a prior distributionπ over a given modelM, not the quality ofM itself.
ChoosingM will be the subject of model selection that is treated at the end of this paper.

Our intuitive concept of ignorance is at the center of a tug of war between two forces pulling it in opposite directions.
On the one hand we would like our ignorant priorπ overM to be as spread as possible overM. On the other hand we
would like π to make the parameterθ as stochastically independent as possible from the datax. In geometric termsπ
should be close to the uniform distributionω overM and also the joint distributionp(x,θ) = p(x|θ)π(θ) (or p(x)π(p)
in parameter free notation) should be close to the independent modelt(x)π(θ) (or t(x)π(p)). Even though the true
distributiont(x) is never known completely, it is often asymptotically learnable from observed data. Clearly, in the
absence of actual observations or other restrictions, so thatO = {M} is all that is known, the concept of ignorance
should reduce to plain uniformity overM. The other extreme, i.e., whent(x) is precisely localized byO, the ignorant
prior overM should reduce to a point mass at ˆp ∈ M where p̂ is the projection oft on M. The intermediate case
should be a compromise between uniformity overM and concentration about ˆp. A trade-off between uniformity and
independence.

To finish our attempt to quantify relative ignorance we need only a meaningful notion of separation between
probability distributions. Thus, ifD1 is such a measure for joint distributions of(x,θ) andD2 for distributions overM
then, the maximum ignorant prior is defined as theπ that minimizes the action,

A = α D1(pπ, tπ)+D2(π,ω) (2)

whereα is a positive scalar parameter that measures the uncertainty aboutt and effectively weights the relative
importance of independence versus uniformity.

In the next section we review the basic facts from information geometry. In particular, we identify the class of all
the statistically meaningful measures of separation between unnormalized probability distributions as the family of
δ -deviations.

INFORMATION GEOMETRY TOOLS

Differential geometry provides a powerful and natural language for statistical inference. We collect in this section
some basic facts, definitions and notation for future reference. Amari’s books are still the standard reference.

Let P be the space of all probability distributions on a given (Hausdorff) measurable space. We denote byP̃ the
cone of finite positive measures on the same measurable space, i.e. ˜p∈ P̃ ⇐⇒ p̃= cpwith p∈P andc> 0. Notice
thatP̃ is closed under addition and multiplication by a positive number butP is not. Recently, Zhou and Rohwer
have demonstrated that there is nothing to be lost but a lot to be gained by considering objects inP̃ rather than inP.
We follow here their advice and most of their notation.

A model (also known as regular statistical model or hypothesis space)M is a subset ofP which is also a riemannian
manifold with Fisher information as the metric. Forp∈ P̃ andδ ∈ (0,1] we denote by,

lδ = lδ (p) =
pδ

δ
(3)

we also definel0 = l = logp. We call lδ (p) the δ -coordinates ofp ∈ P̃. Notice thatlδ (p) ∈ L1/δ the space ofδ th
power finite measures defined by,

L1/δ =
{

pδ f : p∈ P̃ and f ∈ L1/δ (p)
}

(4)

L1/δ is a Banach space with the obvious identification of objects,pδ f ≡ qδ g whenever theg ∈ L1/δ (q) is actually

(p/q)δ f . Notice thatp/q is a Radon-Nikodým derivative, when it exists.
Fisher information on the wholẽP is given for allδ ∈ [0,1] by

I(p) = (gi j (p)) = (< ∂i ,∂ j >) =
(∫

p ∂i l ∂ j l

)
=
(∫

∂i lδ ∂ j l1−δ

)
(5)

wheregi j (p) is given relative to a choice of an ordered Hilbert basis inL2. Thus,∂i denotes the Gateaux derivative
in the direction of the chosenith coordinate basis inL2. It is convenient to think of the infinite dimensional manifold,
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P̃ with the above metric, as the ambient external space for our modelsM. The concepts ofδ -geodesic,δ -flat, and
δ -convexM, as it is embedded inL1/δ , are then just defined with the help of the coordinateslδ (p) in the Banach space
L1/δ . We have these properties when theδ -coordinates form respectively a straight line, flat set, and convex set in
L1/δ .

We denote bydV = dVM the volume form for the modelM. In a given parameterization,

dV = ω(θ) = |I(θ)|1/2dθ =
√

detI(θ) dθ (6)

For δ ∈ (0,1) andp,q∈ P̃ theδ -information-deviation (or justδ -deviation for short) betweenp andq is,

Iδ (p : q) =
1

δ (1−δ )

∫
[δ p+(1−δ )q− pδ q1−δ ] (7)

and forδ ∈ {0,1} just take limits of the expression above to obtain the Skilling actions,

I1(p : q) = I0(q : p) =
∫ (

q− p+ p log
p
q

)
(8)

Whenδ = 1/2,

I1/2(p : q) = 2
∫

(
√

p−√q)2 (9)

is twice the square of the Hellinger distance, i.e. the familiarL2 distance between wave functions. Notice that to
computeIδ (p : q) one picks any measurer ∈ P̃ dominating bothp andq (e.g.p+q is always a choice), replacep and
q by their densities with respect tor, i.e. p/r andq/r and carry out the integral with respect to the chosen measurer.
The final result is independent of the choice ofr. Thus,Iδ is truly a functional of the positive measuresp andq and
not just their densities.

Properties ofδ -information

The family ofδ -deviations has a number of remarkable properties:

1. homogeneity: Iδ (cp : cq) = c Iδ (p : q) for all c > 0.
2. positivity: Iδ (p : q)≥ 0 with equality iff p≡ q.
3. duality: Iδ (p : q) = I1−δ (q : p)
4. invariance: for anyT : X 7−→ Y with positive jacobian we have,

Iδ (p : q) = Iδ (pT : qT)

wherepT = p◦T−1 is the transformed probability distribution inY .
5. sufficiency: T : X 7−→ Y is sufficient for discriminating probability distributionsp andq (i.e.

∫
p =

∫
q = 1) iff

Iδ (p : q) = Iδ (pT : qT)

6. uniqueness:Iδ (p : q) are the only functions with the above properties.
7. topological equivalence:For δ ∈ (0,1) all the Iδ topologies are equivalent to the Hausdorff topology of the

Hellinger metric, i.e. the topology generated byI1/2.
8. Taylor expansion: In a given parameterization,

Iδ (θ + εv : θ) =
1
2

gi j v
iv j

ε
2 +

1
6
[
0
Γi jk +

δ

Γki j +
1
Γ jki ]viv jvk

ε
3 +o(ε3)

where the Christoffel symbols are given by Amari’sδ -connection,

δ

Γi jk=
〈

δ

∇∂i
∂ j ,∂k

〉
=
∫

p [∂i∂ j l +δ ∂i l∂ j l ]∂kl

The Levi-Civita metric connection corresponds to the self-dual caseδ = 1/2.
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9. eguchi relations:

gi j =−∂i ∂̇ j Iδ (p : q̇)|p=q
δ

Γi jk=−∂i∂ j ∂̇kIδ (p : q̇)|p=q

10. generalized cosine:

Iδ (p : r)+ Iδ (r : q) = Iδ (p : q)+
∫

(lδ (p)− lδ (r))(l1−δ (q)− l1−δ (r))

11. generalized pythagoras:If the δ -geodesic connectingp to r is orthogonal to the(1− δ )-geodesic connectingr
to q then,

Iδ (p : r)+ Iδ (r : q) = Iδ (p : q)

Special cases ofδ -information-deviations have been discovered and re-discovered more, perhaps, than any other
concept in the history of statistics. With the sole exception ofδ = 1/2, theδ -deviations are not symmetric, and do
not satisfy the triangular inequality so they don’t define distances, in the usual way. However, the above properties
make them to be the onlystatistically meaningful way of measuring separation in the extended space of unnormalized
probability distributions. Theδ -information-deviations are the one and only one measures that are positive definite,
and preserve all the fundamental symmetries of statistical inference, i.e. invariant under coordinate transformations
of both the data and the parameter space and invariant under sufficient reductions of the data. If further more, one
demands additivity over independent sources of information then, the only survivors are the Skilling actions which
coincide with the Kullback numbers for normalized probability measures.

δ -flat Models

To finalize our quick over-view of IG we mention that intrinsicallyδ -flat models (i.e. with zero riemman tensor
associated to theδ -connection) are always also(1−δ )-flat and therefore admit mutually orthogonal geodesic coordi-
nate systems(θ ,η). Theθ coordinates areδ -affine, i.e. make theδ -Christoffel symbols to be 0. Theη coordinates are
(1−δ )-affine and make the(1−δ )-Christoffel symbols 0. More over, in these special coordinate systems the metric
gi j , and its inversegi j are obtained by differentiating scalar potentialsψ(θ) andφ(η), i.e.,

gi j (θ) = ∂i∂ jψ(θ), gi j (η) = ∂
i
∂

j
φ(η). (10)

and the two potentials are Legendre transforms of each other (just like entropy and free energy in Statistical Mechan-
ics),

ψ(θ) = θ
i
ηi −φ(η) (11)

with

θ
i = ∂

i
φ(η), and ηi = ∂iψ(θ). (12)

In these coordinates,

Iδ (pθ : qη) = ψ(θ)+φ(η)−θ
i
ηi . (13)

The extended spacẽP is δ -flat andδ -convex for allδ ∈ [0,1]. The space of all the discrete distributions on a finite
set of atoms is also intrinsicallyδ -flat for all δ . Exponential family models are intrinsically(0,1)-flat.

ALL THE INVARIANT ACTIONS FOR IGNORANCE

As shown in the previous section, Information Geometry provides the needed class of measures of separation to be
used in (2). Two are needed since we need to measure separation in two different spaces. PickIδ for deviations
between joint distributions of(x,θ) and pickI1−ν for quantifying deviations of distributions overM. We arrive to a
three parameter family of invariant actions,
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A (π;α,δ ,ν) = α Iδ (pπ : tπ)+ I1−ν(π : ω) (14)

where the parameters,α > 0, δ ∈ [0,1] andν ∈ [0,1] are free for now. The actions defined in (14) also depend ont
and implicitly onM andO but it is not shown explicitly to keep the notation simple. Even thoughp appears on the
right hand side of (14), it is integrated over insideIδ soA itself is not a function ofp.

Theδ -deviations are well-defined in the extended spaceP̃ of unnormalized positive measures and the extra freedom
makes the optimization of actions of type (14) simpler. To take advantage of this benefit we adhere from now on to the
following notational convention:

Assumption 1 Distributions over M, likeπ andω may appear unnormalized. Equations such us,π(θ) = f (θ) could
meanπ(θ) ∝ f (θ) when needed andπ may stand for a scalar density or a form depending on the context.

We are now ready to formally define relative ignorance.

Definition 1 (relative (δ ,ν)-ignorance) We say that aπ∗ is (δ ,ν)-ignorant at levelα > 0 relative to M and O iff

π
∗ = argmin

π∈O
A (π;α,δ ,ν) (15)

where, for lack of better notation, we writeπ ∈ O to mean that the minimum is to be taken over all theπ that agree
with the prior information contained inO. Before writing the general solution for the caseO = {M}, we consider the
following:

Theorem 1 Iδ (pπ : tπ) =
∫

M Iδ (p : t) π(p)dV.

Proof Just an application of Fubini’s theorem. The caseδ ∈ {0,1} follows by continuity from the caseδ ∈ (0,1) for
which,

δ (1−δ )Iδ (pπ : tπ) =
∫

[δ pπ +(1−δ )tπ− pδ
π

δ t1−δ
π

1−δ ] = δ (1−δ )
∫

π Iδ (p : t)

Q.E.D.
In words: Theδ -deviation between the joint distributionp(x)π(p) and the independent modelt(x)π(p) is always

equal to the expectedδ -deviation betweenp(x) andt(x), where the expectation is taken with respect to the priorπ(p).
Thus, the choice ofδ is effectively a choice of distance for distributions over the data space. The choice ofν specifies
the distance for distributions overM or, equivalently, the parameter space. With the help of this theorem let us re-write
the actions (14) as,

A (π;α,δ ,ν) = α 〈Iδ (p : t)〉
π
+ I1−ν(π : ω) (16)

= α

{
Iδ (pπ : tπ)+

1
α

I1−ν(π : ω)
}

(17)

Using the standard arguments from optimization subject to inequality constraints (Khun-Tucker) we can show that
the π∗ minimizing (16) is the same as theπ∗ closer to the uniform overM (in the (1− ν)-deviation) subject to a
maximum average distance (in theδ -deviation) fromt. In the caseν = 0 this is literally maximum entropy subject to a
constraint. In a similar way, by using (17) we can choose to optimize independence subject to an inequality constraint
on uniformity. We write it as a theorem,

Theorem 2 The following are all equivalent:

1. π∗ is (δ ,ν)-ignorant at levelα > 0.
2.

π
∗ = argmax{−I1−ν(π : ω)}

s.t.
< Iδ (p : t) >π ≤ Emax

(18)

3.
π
∗ = argmin Iδ (pπ : tπ)

s.t.
Iν(ω : π) ≤Cmax

(19)
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where Emax,Cmax, andα are functions of each other.

Theorem (2) provides a simple geometric characterization for our concept of ignorance. The ignorant prior is the one
that maximizes spread overM subject to keeping the mean distance from a fix trutht less than a maximum acceptable
valueEmax. Clearly, if t 6∈M thenEmax≥ Iδ (p̂ : t) > 0 otherwise there will be no solution.

MAXIMUM IGNORANCE

We have found a path to ignorance so let us dare to walk the walk.

Theorem 3 Let

αmin = inf {α > 0 : Z(α) =
∫

M
[1+αν Iδ (p : t)]−

1
ν dV < ∞} (20)

Then, forα > αmin, when O= {M} the(δ ,ν)-ignorant prior at level Zν α is,

π∗

ω
=

1
Z(α)

[1+αν Iδ ]−
1
ν (21)

Proof Impose the normalization constraint and use (16) to write,A +(λ/ν)
∫

π =
∫

L with,

L = Zν
αIδ π +

π

ν
+

ω

1−ν
− π1−ν

1−ν

ων

ν
+

λ

ν
π

where we have replacedα with Zν α. Thus,

δL

δπ
= 0 ⇐⇒ π∗

ω
= [1+λ +Zν

αν Iδ ]−
1
ν

which coincides with the normalized density (21) whenλ = Zν −1.
Q.E.D.

At this point the reader is encouraged to praise the author for his choice of notation. All the symbols in (21)
are statistically and geometrically meaning-full. The left hand side of (21) is a Radon-Nikodým derivative. The
right hand side is a normalized scalar density field overM. Several families of prior distributions that are routinely
used in practical applications, as subjective priors, are special cases of (21). Hence, equation (21) may provide an
objective justification for their practical use. In particular, equation (21) includes the family of multivariate Student-t
distributions when e.g.M is a location model in the exponential family,δ ∈ {0,1} andν ∈ (0,1]. For this reason we
may think of (21) as a generalized-t family. The caseν ∈ {0,1} is obtained from (21) by taking limits. Asν → 0,
we obtain(π∗/ω) → exp(−αIδ ). Thus, equation (21) includes all the entropic priors as the special caseν = 0 and
δ ∈ {0,1}. The (0,0)-ignorant priors include the standard2 family of conjugate priors for the exponential family
likelihoods (see below). The caseν = 1 can be thought as a generalized multivariate Cauchy. Jeffreys’ priors are the
caseα = 0 but theorem (2) (see the paragraph right after it) shows that in some cases there may be anαmin > 0 beyond
which the solution is meaningless. Anαmin > 0 may be needed even ift ∈ M for some models with infinite volume
or with unbounded densities, in order to assure that the prior is normalizable. All the traditional maximum entropy
distributions are also included as the limitα → ∞.

IGNORANCE IS NEGATIVE FREE ENERGY

Let Z = Z(α,δ ,ν , t) be the normalizing partition function for the family of ignorant priors (21), i.e.,

Z =
∫

M
[1+αν Iδ (p : t)]−

1
ν dV. (22)

2 Only if they are interpreted as scalar densities onM
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Definition 2 (Free Energy) The function F= F(α,δ ,ν , t) given by

F =− logZ (23)

is the free energy associated to the(δ ,ν)-ignorant prior (21).

We show that the actual minimal value of the action at the optimal(δ ,ν)-ignorant prior is an increasing function of
the free energy and it is exactly the free energy whenν = 0.

Theorem 4 Let the model M and the ignorant prior be normalized, i.e.,
∫

ω =
∫

π∗ = 1. Then the minimal value of
the action that (21) minimizes isA ∗ given by,

A ∗ =
1
ν

(1−e−νF)+ν I1−ν (24)

Moreover,

lim
ν→0

A ∗ = F (25)

lim
ν→1

A ∗ = 1−e−F + I0 (26)

(27)

Proof From theorem (3) we have,

A ∗ = Zν
α < Iδ > +I1−ν (28)

using (21) and the normalization assumptions we compute,

I1−ν =
1

ν(1−ν)

(
1−

∫ (
π∗

ω

)1−ν

ω

)

=
1

ν(1−ν)
− Zν

ν(1−ν)

∫
[1+αν Iδ ]π∗

=
1

ν(1−ν)
− Zν

ν(1−ν)
(1+αν < Iδ >) (29)

substituting (29) into (28),

A ∗ =
1

ν(1−ν)
{

1− (1+ν
2
α < Iδ >)e−νF}

=
1

ν(1−ν)
{

1− (1+ν
2[A ∗− I1−ν ]eνF)e−νF}

solving forA ∗ we obtain (24).
Q.E.D.
Theorem (4) establishes a connection between amount of ignorance and free energy that naturally prompts us to ask
new questions that theorem (4) is unable to answer. For example, (24) suggests, but it does not prove, that the optimal
action for ignoranceA ∗ is always an strictly increasing function ofF for all ν ∈ [0,1]. We can only deduce from (24)
and (25) thatA ∗ is increasing inF for ν ∈ [0,ε] for someε > 0. A more detailed analysis ofI1−ν as a function of
F seems to support the conjecture thatA ∗ is increasing inF for all ν ∈ [0,1]. A final proof is not available at the
moment. No proof is really needed if we change the problem a little... if the mountain doesn’t come to Mohammed...

The problem, I believe, is our original definition for free energy (23). Let us look into the explanation of the
traditional thermodynamic quantity by means of statistical mechanics. The phenomenological concept of free energy
A= E−TS, as originally defined by Helmholtz, is related to the statistical mechanical concept of sum-over-states (i.e.
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partition function)Z by the usual formulaA≡ −kT logZ but only whenZ = ∑ne−En/kT i.e. only when the partition
function is the normalizing constant of a model in the exponential family. But our family of(δ ,ν))-ignorant priors is
not in the exponential family unlessν = 0. This suggests redefining free energy as the optimal value of our action for
ignorance, in which case, ignorance is negative free energy by definition!

It is intuitively clear that ignorance is the other side of the coin of information. We should expect something like

Information + Ignorance= O. (30)

We know from Shannon that negative entropy is information. Theorem (4) shows that, at least forν = 0, negative free
energy is ignorance. Should we then expect the sum of the two to give the whole glass of knowledge?. What is the
whole glass anyway?. Shouldn’t the whole glass change somehow dynamically? For otherwise how are we going to
be able to account for true evolutionary innovation?

IGNORANCE IS SELF-ADJOINT 3

Let us denote byπ(p|t) the right hand side of (21). If we assume thatt ∈M then we can regardπ(p|t) as a function of
two arbitrary distributions inM. Let us also consider an arbitrary smooth relabeling of the elements ofM. Thus, each
distribution inM has two names,p = p(q) andq = q(p). Also, each distribution inM has two roles that it can play. It
can act as the trutht or as justp. We denote the role-flipping operator with a hat on top of the name. Hence,

π(p|q̂) = [1+αν Iδ (p : q̂)]−
1
ν (31)

denotes the(δ ,ν)-ignorant prior in thep-coordinates given truth ˆq represented in theq-coordinates. Since ignorant
priors are scalar functions which are invariant under relabelings we have,

π(p|q̂) = π(q|p̂). (32)

Define the operation ofcoordinate transposition,

(p,q)→ (q, p) (33)

that defines the transpose ofπ as,

π
>(p|q) = π(q|p) (34)

and define also the operation oftruth conjugation,

p→ p̂ (35)

that defines the conjugate ofπ as,

π̄(p|q̂) = π(p̂|q). (36)

If we define the adjoint ofπ as its conjugate transpose and we denote it byπ†, then using (32) we obtain,

π(p|q̂) = π
>(q̂|p) = π

†(q|p̂) = π(q|p̂). (37)

Soπ = π† which is our definition of self-adjoint.

3 WITH RESPECT TO THE OPERATION OF TRUTH CONJUGATION DEFINED IN THE TEXT
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IGNORANT PRIORS ON δ -CONVEX MODELS

A δ -convex set of unnormalized distributions is defined, as mostδ -properties are, by looking at itsδ -coordinates. It is
δ -convex when the set of theδ -coordinates of its members is convex as a subset of the Banach spaceL1/δ . Straight lines
of δ -coordinates areδ -geodesics so a setS is δ -convex iff given two points inS, the delta geodesics connecting them
are included inS. Models which areδ -convex, have the remarkable property of being able to represent truth faithfully
with one of their members. But in general there is a price to be paid. A modelM always entails a compromise between
simplicity (small, computationally tractable) and accuracy (big, complex). There is in general no warranty that the true
distributiont(x) is in M. As the following theorem shows, when the model isδ -convex, we can replacet 6∈ M by its
(1−δ )-projectionq̂∈M without missing a bit.

Theorem 5 Let M be closed (in the Hellinger topology) andδ -convex. Letπ(p|t,α) denote the(δ ,ν)-ignorant prior
at levelα when the true distribution is t. Then,

π(p|t,α) = π(p|q̂, α̂) (38)

wherep̂ is the unique(1−δ )-projection of t on M, i.e.,

I1−δ (t : q̂) = min
p∈M

I1−δ (t : p) (39)

and
α̂ =

α

1+αν Iδ (q̂ : t)
(40)

Proof Use the generalized law of cosines and generalized pythagoras to show that the(1− δ )-projection oft on a
closedδ -convexM, exists, it is unique, and belongs toM. Just as it is the case in a Hilbert space (see Amari85 p99
theorem3.9). Now recall that̃P is δ -flat for all δ so the(1−δ )-geodesic inP̃ connectingt to the projection ˆq∈M
is orthogonal to theδ -geodesic connecting ˆq to an arbitraryp∈M. Thus, by generalized pythagoras,

Iδ (p : t) = Iδ (p : q̂)+ Iδ (q̂ : t). (41)

Replacing (41) in the formula for the ignorant prior (21) and sticking to assumption (1) we have,

π(p|t,α) = [1+αν Iδ (q̂ : t)+αν Iδ (p : q̂)]−
1
ν

= [1+αν Iδ (q̂ : t)]−
1
ν [1+ α̂ν Iδ (p : q̂)]−

1
ν

= π(p|q̂, α̂) (42)

Q.E.D.
Equation (40) is interesting. It quantifies the sticker price to be paid when replacingt 6∈ M with q̂∈ M. It is clear

that α measures, the amount of information in the ignorant prior. The smaller theα, the closer the ignorant prior is
to the uniform overM. Now, equation (40) is telling us that if we want to guesst with some distribution inM we can
do so. Prior and likelihood will stay the same and therefore the inferences will be exactly the same. However, the new
prior needs to be less informative about the projected truth in order to be able to match the original. On the one hand
equation (40) confirms the obvious: Information aboutt is worth less the farther awayt is fromM. On the other hand,
equation (40) provides a precise quantification that, as far as I know, it was not known before. For example, ift 6∈ M
andν > 0, then as we collect more and more information aboutt so thatα increases,̂α approaches monotonically
from below, the number(ν Iδ (q̂ : t))−1 > 0. Equation (40) also tells us thatν = 0 is very special.

IGNORANCE ON δ -FLAT MODELS

Models that are intrinsicallyδ -flat, admit dual geodesic coordinate systems (see (11),(12), (13)), and they are obviously
δ -convex. Thus, theorem (5) is applicable. We have,

Theorem 6 Under the conditions and notation used in theorem (5). If M isδ -flat then, in theδ -affine coordinatesθ ,
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π(θ |θ̂ , α̂) =
[
1+ α̂ν

{
(ψ(θ)−ψ(θ̂))− (θ − θ̂) · η̂

}]− 1
ν (43)

and in the(1−δ )-affine coordinatesη ,

π
†(η |η̂ , α̂) =

[
1+ α̂ν

{
(φ(η)−φ(η̂))− θ̂ · (η− η̂)

}]− 1
ν (44)

whereθ̂ = θ(η̂) andη̂ = η(θ̂) are the coordinates of̂q∈M.

Proof Let p = pθ and use (13) to write,

Iδ (p : q̂) = Iδ (θ : η̂)
= ψ(θ)+φ(η̂)− η̂ ·θ
= (ψ(θ)−ψ(θ̂))− η̂ · (θ − θ̂)

the last equality follows by noticing that̂η and θ̂ are the coordinates of the same point ˆq and thusIδ (θ̂ : η̂) = 0.
Replacing into the ignorance prior given by theorem (5) we obtain (43). To obtain (44) just notice thatIδ (θ : η̂) =
I1−δ (θ̂ : η)
Q.E.D.

A simple, but useful, corollary of theorem (6) is,

Theorem 7 Under the conditions of theorem (6) we have,

π(θ |θ̂ , α̂) =
[
1+ α̂ν

∥∥θ − θ̂
∥∥2

θ̂

]− 1
ν (1− ε) (45)

whereε = o(
∥∥θ − θ̂

∥∥2
θ̂
) and‖ · ‖

θ̂
denotes the norm induced by the riemannian metric atθ̂ .

Proof The result follows at once by expandingψ(θ) in a Taylor series about̂θ , using (13) and (11) and replacing into
(43).
Q.E.D.

The previous theorem shows that thescalar densitiesof ignorant priors onδ -flat models are approximated around
θ̂ by multivariate Student-t distributions centered atθ̂ on the manifoldM. Recall that the (unnormalized) density of a
Student-t withd degrees of freedom is,

Td(x) =
[
1+

x2

d

]− (d+1)
2

(46)

and matchingd to ν we obtain,

d =
2
ν
−1 (47)

The approximation (45) becomes,

[
1+ α̂ν

∥∥θ − θ̂
∥∥2

θ̂

]− 1
ν =

[
1+

α̂(2−ν)
∥∥θ − θ̂

∥∥2
θ̂

d

]− (d+1)
2

(48)

The extra factor ˆn= α̂(2−ν) has a simple interpretation. It is the equivalent number of virtual observations supporting
the prior since it can be thought as a factor of the metric, and the metric (Fisher information) is additive over
independent observations. Using (40) we obtain,

n̂ =
α(2−ν)

1+αν Iδ (q̂ : t)
(49)

I find equation (49) intrinsically cool in the way it relates geometric, statistical and information concepts. It increases
asν decreases from 1 to 0 so that,
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α

1+αIδ (q̂ : t)
≤ n̂≤ 2α (50)

In general, whent ∈M, n̂ = α(2−ν) andn̂ = α only whenν = (1+ αIδ (q̂ : t))−1. In particular,n̂ = α whent ∈M
andν = 1 as we shall re-discover below.

As a final comment we mention that one should expect theorems (5, 6, 7) in this section to remain useful (as first
order approximations) even when the models are not exactlyδ -flat. A complete perturbative analysis for a general
curved modelM involves higher order covariant derivatives and the modifications will surely containδ -curvature
terms. I hope to be able to continue work on this problem in the near future.

IGNORANCE ON EXPONENTIAL FAMILY MODELS

Exponential family models are intrinsically 1-flat and therefore also 0-flat. However their 0-coordinates do not form
a flat manifold. The situation is just like the canonical example of a cylinder imbedded in euclidean flat space. The
cylinder curves but it can be smoothly unrolled so its intrinsic geometry is not different from the geometry of the plane.

The following theorem is well known. Given its practical importance we provide a complete proof. It also makes a
nice concrete example of flat models and the use of the formulas introduced in the IG overview.

Theorem 8 Exponential family models are intrinsically1-flat. The natural parameter is0-affine and the expectation
parameter is1-affine. Their scalar potentials are the negative free energy and the negative entropy respectively.

Proof In the natural parameterθ , the normalized likelihood of an exponential family model with vector of sufficient
statisticsc(x) is given by,

pθ (x) = eθ ·c(x)−ψ(θ) (51)

whereψ(θ) is the negative free energy,

ψ(θ) = log
∫

ec(x)·θ dx (52)

This is in fact the scalar potential satisfying (10) since,

gi j (θ) =−Eθ (∂i∂ j l) = ∂i∂ jψ(θ) (53)

as it can be readily checked by taking derivatives of the 0-coordinates, i.e. the log likelihood,

l = θ ·c(x)θ −ψ(θ) (54)

∂i l = ci(x)−∂iψ(θ) (55)

∂i∂ j l = −∂i∂ jψ(θ) (56)

Taking expectations on both sides of (55) we obtain the dual 1-affine coordinates as the expectation parameter,

ηi = ∂iψ(θ) = Eθ (ci(x)) (57)

The Legendre transform of (52) gives the other potential as,

φ(η) = θ ·η−ψ(θ) (58)

=
∫

[c(x) ·θ −ψ(θ)]ec(x)·θ−ψ(θ) dx

φ(η) =
∫

pθ (x) logpθ (x) dx. (59)

We notice also that,
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δik =
∂ηi

∂ηk
=

∂ηi

∂θ j

∂θ j

∂ηk
= gi j

∂θ j

∂ηk

where we used (57) and (53) for the last equality. This shows∂θ j/∂ηk = g jk to be the entries of the inverse. Thus, if
∂ i = ∂

∂ηi
is the tangent vector in theη-coordinates, we have

< ∂
i ,∂ j >=< gik

∂k,∂ j >= gikgk j = δ
i
j (60)

which is a constant (either 0 or 1) and we have,

0 = ∂k < ∂
i ,∂ j >=<

1
∇k ∂

i ,∂ j > + < ∂
i ,

1
∇k ∂ j >= gim

(
1
Γkm j +

1
Γk jm

)
from where we deduce that,

1
Γki j (θ)+

1
Γk ji (θ) = 0. (61)

Now we have all the ingredients to show that exponential family models are indeed intrinsically 1-flat by showing that
in theθ -coordinates all the 1-connection coefficients are zero. We have,

1
Γi jk= Eθ (∂i∂ j l∂kl)+Eθ (∂i l∂ j l∂kl) (62)

The first term on the right hand side of (62) is shown to be zero by just using (56). The second term is also zero as we
now show,

Eθ (∂i l∂ j l∂kl) =
∫

∂i pθ ∂ j l∂kl

=
∫

∂i pθ [
∂i∂kpθ

pθ

−∂ j∂kl ]

=
∫

∂i l∂ j∂kpθ =
∫

[ci(x)−∂iψ(θ)]∂ j∂kpθ

=
∫

ci(x)∂ j∂kpθ = ∂ j∂k

∫
ci pθ = ∂i∂ j∂kψ(θ)

= ∂ig jk(θ) = ∂i < ∂ j ,∂k >

=
1
Γi jk (θ)+

1
Γik j (θ)

= 0.

Where we have used (61) for the last equality.
Q.E.D.

(0,ν)-ignorant prior on exponential family models

As we have seen, exponential family models are(0,1)-flat and therefore everything that was shown above, for
general convex and flat models, holds in particular for members of the exponential family. Theorem (6) gives the
ignorant prior forδ ∈ {0,1} and arbitraryν ∈ [0,1] in terms of the two potentials: the negative free energy, and the
negative entropy. We have

Theorem 9 The(0,ν)-ignorant prior at levelα is given, for models in the exponential family, by

π(θ |η̂ , α̂) = [1+ α̂ν(ψ(θ)+φ(η̂)−θ · η̂)]−
1
ν (63)

the scalar potentialψ is the negative free energy (52), the dual scalar potentialφ is the negative entropy (59), and̂η

are the1-coordinates ofp̂.
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Proof (trivial).

When datax is available the natural estimate forη̂ to be used in (63) is the MLE, i.e. theθ that makes the observed
x most likely. If follows from (55) that the MLE iŝη = c(x). We have,

Theorem 10 When M is in the exponential family, the scalar posterior density based on data x and the(0,ν)-prior
with η̂ = c(x) can be written as,

π(θ |x,c(x)) =
e−s

[1+ α̂νs]1/ν
(64)

where s= s(θ ,x)≥ 0 defines the surface of equiprobability given by,

ψ(θ)+φ(c(x))−θ ·c(x) = s (65)

Proof Use bayes, theorem (9) and assumption (1).
Q.E.D.
Theorem (10) shows a remarkable property of the(0,ν)-ignorant prior for exponential family models. The prior and
posterior equiprobability surfaces are the same. It also suggests a simple algorithm for sampling the posterior: Pick a
surfaceswith probability proportional to the right hand side of (64) then sample uniformly from the surfacesdefined
by (65).

Conjugacy

Until around 1990, conjugate priors for models in the exponential family were essentially the only ones being used
in multidimensional problems. The well known PCMCMC revolution changed all that.

With conjugate priors, computation of the posterior distribution reduces to plug-in formulas for the posterior param-
eters that involve only the sufficient statistics of the observed data. Conjugacy was invented to avoid multidimensional
integration over the parameter space. Essentially to keep it simple. As we show here, these priors turn out to be ig-
norant provided you think of them as scalar densities on the manifoldM, i.e. as densities with respect todVM (see
(6)).

Theorem 11 The(0,0)-ignorant prior over a model M in the exponential family of distributions is conjugate.

Proof Exponential family models are(0,1)-flat. In the standard dual coordinates for flat models the(0,0)-ignorant
prior is given by (43) whenν → 0 as,

π(θ |θ̂ ,α) = e(αθ̂ ·θ−αψ(θ)) (66)

where we have used the fact thatα̂ = α sinceν = 0 (see (40)). On the other hand the normalized likelihood is,

pθ (x) = e(c(x)·θ−ψ(θ)). (67)

Where,c(x) is the vector of sufficient statistics and,

ψ(θ) = log
∫

eθ ·c(x)dx (68)

Thus, the posterior is,

π(θ |x, θ̂ ,α) = e((c(x)+αθ̂)·θ−(α+1)ψ(θ)) (69)

this is in the same family as the prior and therefore it is conjugate.
Q.E.D.
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δ -IGNORANCE

As we have seen, ignorance involves a trade off between uniformity and independence. In this section we show that
independence by itself is enough to define a simplified notion of ignorance over a modelM. Moreover, the previous
notion of(δ ,ν)-ignorance at levelα coincides with this new version when(δ ,ν) = (1,0).

The idea is straight forward. Pick one of the available measures of separation (e.g.Iδ )on the space of joint
distributions of(x,θ) and measure theδ -deviation betweenp(x,θ) = p(x|θ)π(θ)≡ pπ and an arbitrary independent
modelt(x)η(θ) ≡ tη . The quantityIδ (pπ : tη) measures closeness from the dependent to the specified independent
model. We have,

Theorem 12 For normalized p and t (i.e., when
∫

p =
∫

t = 1) we have,

Iδ (pπ : tη) = Iδ (π : η)+
∫

M
Iδ (p : t)πδ

η
1−δ (70)

Proof Just write,

δ (1−δ )Iδ (pπ : tη) =
∫ ∫ [

δ pπ +(1−δ )tη− pδ
π

δ t1−δ
η

1−δ

]
=

∫ [
δπ +(1−δ )η− (

∫
pδ t1−δ )πδ

η
1−δ

]
(71)

=
∫ [

δπ +(1−δ )η−π
δ

η
1−δ +δ (1−δ )Iδ (p : t)πδ

η
1−δ

]
(72)

= δ (1−δ )Iδ (π : η)+δ (1−δ )
∫

Iδ (p : t)πδ
η

1−δ (73)

where we have used the hypothesis of normalization to obtain (71) and (72).
Q.E.D.
If α is a positive integer we denote simply bypα andtα the corresponding joint distributions ofα independent copies
of the data vectorx, i.e.,

pα =
α

∏
i=1

p(xi |θ) and tα =
α

∏
i=1

t(xi) (74)

Thus, for normalizedp andt we have,

Iδ (pα : tα) =
1

δ (1−δ )

(
1−
{∫

pδ t1−δ

}α)
(75)

we use the right hand side of (75) as the definition ofIδ (pα : tα) for anyα > 0. By taking limits, it follows immediately
from (75) that,

Iδ (pα : tα) = α Iδ (p : t) for δ ∈ {0,1} (76)

Using (70) together with (75) we define,

Definition 3 (relative δ -ignorance) We say thatπ∗ is δ -ignorant at levelα > 0 relative toη ,M and O iff

π
∗ = argmin

π∈O
Iδ (pα

π : tα
η) (77)

We have,

Theorem 13 When O= {M} theδ -ignorant prior at levelα relative toη is,

π∗

η
= [1−δ (1−δ )Iδ (pα : tα)]

1
1−δ (78)
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Proof Use theorem (12) to write the action as
∫

L thenδL /δπ = 0 gives (78).
Q.E.D.
The following theorem is also immediate,

Theorem 14
I1(pα

π : tα
ω) = A (π;α,1,0) (79)

Proof Replaceδ = 1 andν = 0 in (16).
Q.E.D.
It therefore follows that,

π∗

ω
= e−α

∫
plog p

t (80)

is both a(1,0)-prior and a 1-prior at levelα. Notice that it is also possible to switch the positions ofpα with tα in (77)
in which case the(0,1)-prior coincides with the new 0-prior at levelα.

EXAMPLE: (0,0)-PRIOR FOR MIXTURES OF GAUSSIANS

The general theory presented above has many applications. To demonstrate the utility of our new understanding of
statistical ignorance we work out all the details of a concrete example. In this section we compute the(0,0)-prior
for the parameters of a mixture ofk one dimensional gaussians. We assumek to be a given known positive integer.
A simple parameterization is then given byθ = (µ,σ ,ω), whereµ = (µ1, . . . ,µk) ∈ Rk is ak-dim vector of means,
σ = (σ1, . . . ,σk) ∈ Rk

+ is ak-dim vector of standard deviations, andω = (ω1, . . . ,ωk) ∈ ∆k−1 is the vector of mixing
weights in the(k−1)-dim simplex∆k−1. Thus, our hypothesis spaceM is a 3k−1 dimensional manifold.

The Complete Likelihood

The elements of our modelM are the probability distributions for the data vector(x,z) indexed by the vector of
parametersθ . We assume that the complete data(x,z) is generated by first picking a labelz∈ {1,2, . . . ,k} with
probability vectorω and after that, choosingx by sampling from a gaussian with meanµz and standard deviationσz.
Thus, forx∈ R, z∈ {1,2, . . . ,k} andθ = (µ,σ ,ω) ∈ Rk×Rk

+×∆k−1 ≡Θ we have,

p(x,z|θ) = p(z|θ) p(x|z,θ)

= ωz
1√

2πσz
exp

{
− (x−µz)2

2σ2
z

}
(81)

Hence,

M = {p(x,z|θ) : θ ∈Θ} (82)

Computation of dV on M

In order to obtain an ignorant prior onM, relative to the standard lebesgue measure, we need to first find the volume
element of the manifoldM. To use (6) we only need to find the Fisher information matrixI(θ) and its determinant
|I(θ)|. We proceed in the standard way by computing first the log likelihoodsl(θ), then their second derivatives∂i∂ j l ,
and finally expected values to obtainI = (gi j ) = (−Eθ (∂i∂ j l)). The log likelihoods are obtained from (81) as,

l = l(θ) = logp(x,z|θ)

= logωz−
(x−µz)2

2σ2
z

− logσz−
1
2

log2π
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=
k

∑
j=1

{
logω j −

(x−µ j)2

2σ2
j

− logσz−
1
2

log2π

}
1(z= j) (83)

where we have used the indicator function 1(z= j) which takes the value one whenz= j and zero otherwise.

µ-derivatives

From (83),

∂ l
∂ µ j

=
(x−µ j)

σ2
j

1(z= j) and
∂ 2l

∂ µ2
j

=−1(z= j)
σ2

j

=⇒ gµ j µ j =
ω j

σ2
j

(84)

Notice that thegµ,ω terms are all zero since the first equation above does not explicitly depend on theω j parameters.
We show below that thegµ,σ are also zero.

σ -derivatives

Again from (83) we compute,

∂ l
∂σ j

=

{
(x−µ j)2

σ3
j

− 1
σ j

}
1(z= j) =⇒ ∂ 2l

∂σ2
j

=

{
−3(x−µ j)2

σ4
j

+
1

σ2
j

}
1(z= j) (85)

=⇒ gσ j σ j =

(
3

σ2
j

− 1

σ2
j

)
ω j =

2ω j

σ2
j

(86)

The first equation in the line (85) does not explicitly depend on any of theω parameters nor does it depend on any
otherµi except forµ j . Thus, all of the off-diagonal terms,gσ j ,µi = 0 for i 6= j andgσ ,ω = 0. We also have,

gµ j ,σ j = Eθ

(
∂ l

∂ µ j

∂ l
∂σ j

)
= Eθ

(
(x−µ j)3

σ5
j

−
(x−µ j)

σ3
j

)
= 0 (87)

ω-derivatives

Once more we compute using (83) and noticing that,

ωk = 1−
k−1

∑
j=1

ω j (88)

and obtain,

∂ l
∂ω j

=
1(z= j)

ω j
− 1(z= k)

ωk
for j = 1,2, . . . ,k−1. (89)

Hence, it follows from (89) that all the mixed entries of typegωµ = gωσ = 0. The only non zero entries are,
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gωiω j = E

{(
1(z= i)

ωi
− 1(z= k)

ωk

)(
1(z= j)

ω j
− 1(z= k)

ωk

)}
= E

{
1(z= i)1(z= j)

ωiω j
+

1(z= k)
ω2

k

}
=

δi j

ω j
+

1
ωk

(90)

whereδi j = 1(i = j) is Kronneker’s delta.

Fisher Information Matrix

Collecting the above findings we can see that Fisher Information matrix is block diagonal,

I(θ) =


Iµ 0 0

0 Iσ 0

0 0 Iω

 (91)

whereIµ andIσ arek×k diagonal matrices with entries,

Iµ =



ω1
σ2

1
0

ω2
σ2

2

...

0 ωk
σ2

k


and Iσ =



2ω1
σ2

1
0

2ω2
σ2

2

...

0 2ωk
σ2

k


(92)

andIω is (k−1)× (k−1) with all non-zero entries,

Iω =



1
ω1

+ 1
ωk

1
ωk

1
ωk

· · · 1
ωk

1
ωk

1
ω2

+ 1
ωk

1
ωk

· · · 1
ωk

...
...

1
ωk

· · · 1
ωk

1
ωk−1

+ 1
ωk


(93)

Using (6) and (91) we obtain

dV =
√
|Iµ | |Iσ | |Iω | dµ dσ dω (94)

From (92) and (93) the determinants|Iµ | and|Iσ | are just the product of their diagonal entries. The only complication
that remains is the determinant|Iω | that we compute as follows. First subtract the second column of (93) from the
first column to obtain a matrix identical to that given by (93) except that now the first column has entries 1/ω1,
−1/ω2 and zeros down from the third to the(k−1)st row. Call the determinant of this new(k−1)× (k−1) matrix
Dk−1(ω1,ω2, . . . ,ωk). We have,

|Iω |= Dk−1(ω1,ω2, . . . ,ωk) (95)

since the two matrices differ only by an elementary column operation that does not change the determinant. Now
expanding the determinantDk−1 about the first column, that has all zeros except for the first two entries, we obtain the
recursion,
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Dk−1(ω1, . . . ,ωk) =
1

ω1
Dk−2(ω2, . . . ,ωk)+(ω2ω3 . . .ωk)−1 (96)

where the second term on the right hand side of (96) is obtained by multiplying 1/ω2 times the determinant of the
matrix obtained from (93) by erasing the first column and the second row. This co-factor is brought into an almost upper
triangular matrix with main diagonal entries given by, 1/ωk,1/ω3,1/ω4, . . . ,1/ωk−1 by subtracting the previous to last
column from the last column, the second to last from the previous to last, etc, until the first column. The determinant
of this almost upper triangular matrix is shown to be the product of the main diagonal by expanding about its first row
that contains only zeros except for the first entry 1/ωk.

From the recursion (96) we easily show,

Theorem 15 For k = 2,3, . . .

Dk−1(ω1, . . . ,ωk) =
∑k

j=1 ω j

∏k
j=1 ω j

(97)

Proof By induction onk. It is true fork = 2 since,

D1(ω1,ω2) = (
1

ω1
+

1
ω2

) =
ω1 +ω2

ω1ω2
(98)

If it is true for k then using (96) and the induction hypothesis we have,

Dk(ω1, . . . ,ωk+1) =
1

ω1
Dk−1(ω2, . . . ,ωk+1)+(ω1 · · ·ωk+1)−1

=
1

ω1

∑k+1
j=2 ω j

∏k+1
j=2 ω j

+
1

∏k+1
j=2 ω j

=
∑k+1

j=1 ω j

∏k+1
j=1 ω j

(99)

Q.E.D.
Finally, from (92), (93) and (97) we write,

dV =
k

∏
j=1

ω
1/2
j

σ2
j

dµ dσ dω (100)

Entropy

Assumingt ∈M the unnormalized density (with respect to lebesgue measuredθ ) of the(0,0)-prior is,

π(θ |α, θ̂) dθ = e−α I(θ̂ :θ) dV (101)

where,

I(θ̂ : θ) = I0(θ : θ̂) = E
θ̂

{
log

p(x,z|θ̂)
p(x,z|θ)

}
(102)

The distribution inM that represents truth has parameter,

θ̂ = (m,s,w) = (m1, . . . ,mk,s1, . . . ,sk,w1, . . . ,wk) (103)

We compute the entropy (102) by first conditioning on a value ofz and then taking expectation overz, i.e.,
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I(θ̂ : θ) = EzEx|z
{

log
wz

ωz
+ log

N(x;mz,sz)
N(x; µz,σz)

}
(104)

=
k

∑
j=1

w j

{
log

w j

ω j
+ log

σ j

sj
+

(µ j −mj)2

2σ2
j

+
s2

j

2σ2
j

− 1
2

}
(105)

where in (104)N(x;a,b) denotes the usual density for a gaussian distribution with meana and standard deviationb.
Combining (105) with the previously obtained formula for the volume element (100) we obtain,

π(θ |α, θ̂) =
k

∏
j=1

exp

{
−

αw j

2σ2
j

(µ j −mj)2

}

·σ−αw j−2
j exp

{
−

αw j

2σ2
j

s2
j

}
(106)

·ωαw j+ 1
2

j

Equation (106) shows, I believe correctly for the first time, the(0,0)-prior for mixtures of univariate gaussians. It is
clearly integrable and remarkably simple. The mixing weightsω follow a Dirichlet, the vector of standard deviations
σ has independent components that follow inverse-Gamma distributions, and the vector of meansµ, conditionally on
σ , also has independent components that follow gaussian distributions. Independent samples from this distribution
can be obtained exactly, without the need of asymptotic Gibbs sampling, with very efficient procedures in the public
domain.

Posterior

Model (82) becomes very useful when assuming that the actual observed data isD = xn = (x1, . . . ,xn) such that
(x1,z1), . . . ,(xn,zn) are independent samples from a distribution in (82) but the vector of labelszn = (z1, . . . ,zn) is not
available, it is missing. The accurate identification of the vector of missing labels is often of great practical importance
with applications scattered all over the spectrum of modern science and technology. Estimation of the missing labels,
as always, is done by simply wiggling the bayesian wand, i.e., applying bayes theorem. Bayes theorem gives the
chances of what we don’t know given what we do know. There is a caveat: A model (i.e. a hypothesis space) and a
prior on the model are needed. In the case of mixtures of univariate gaussians we now have all the ingredients.

The Complete Posterior

If we knew the vector of labelszn then the unnormalized complete posterior would be,

π(θ |xn,zn,α, θ̂) = π(θ |α, θ̂)
n

∏
i=1

ωzi

σzi

exp

{
− (xi −µzi )

2

2σ2
zi

}
(107)

Let k j be the total number of labels that are equal toj, i.e.,

k j =
n

∑
i=1

1(zi = j) (108)

Grouping common labels together we can simplify (107) as,

π(θ |xn,zn,α, θ̂) = π(θ |α, θ̂)
k

∏
j=1

ω
k j
j

σ
k j
j

exp

{
− 1

2σ2
j

∑
zi= j

(xi −µ j)2

}
(109)
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Bringing in the prior (106) we obtain the complete posterior as,

π(θ |xn,zn,α, θ̂) =
k

∏
j=1

exp

{
− 1

2σ2
j

[αw j(µ j −mj)2 + ∑
zi= j

(xi −µ j)2]

}

·σ−αw j−2−k j
j exp

{
−

αw js2
j

2σ2
j

}
(110)

·ωαw j+k j+ 1
2

j

Again, independent samples ofθ with distribution (110) can be obtained exactly, without the need of Gibbs iterations.
We factorize the complete posterior distribution ofθ as,

(θ) = (µ|σ) (σ) (ω) (111)

Thus, to sample a vectorθ = (µ,σ ,ω) from (110) we first produceω with,

ω ∼D(αw1 +k1 +
3
2
,αw2 +k2 +

3
2
, . . . ,αwk +kk +

3
2
) (112)

whereD stands for the Dirichlet distribution. Then we sampleσ from its unconditional distribution obtained from
(110) by integrating overµ. We collect the resulting distribution in the following theorem,

Theorem 16 In the complete posterior (110) the distribution of the vectorσ is,

π(σ |xn,zn,α, θ̂) =
k

∏
j=1

σ
−αw j−k j−1
j exp

{
−1

2σ2
j

[αw js
2
j +A j ]

}
(113)

where,

A j = k j

[
V2

j +
αw j

αw j +k j
(x̄ j −mj)2

]
(114)

and

V2
j =

1
k j

∑
zi= j

(xi − x̄ j)2 = x̄2
j − (x̄ j)2 (115)

and we are using the notation,

x̄ j =
1
k j

∑
zi= j

xi (116)

Proof Tedious but straight forward. We have,

π(σ |xn,zn,α, θ̂) =
∫

π(θ |xn,zn,α, θ̂) dµ

Looking at (110) we see that we need to evaluate the integrals,

Jj =
∫

exp

{
− 1

2σ2
j

[αw j(µ j −mj)2 + ∑
zi= j

(xi −µ j)2]

}
dµ j

Expanding the squares, collecting terms involvingµ j , completing back the square, performing the gaussian integral,
and simplifyiiing we obtain,

Jj =
σ j√

αw j +k j
exp

{
−1

2σ2
j

A j

}
(117)
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Q.E.D.
Also,

Theorem 17 With the notation of theorem (16). For j= 1,2, . . . ,k let,

σ j =

√
αw js2

j +A j

2τ j
(118)

If τ1,τ2, . . . ,τk are chosen independently with distributions,

τ j ∼ G (
αw j +k j

2
) (119)

whereG denotes a Gamma distribution. Then the vectorσ = (σ1, . . . ,σk) follows the distribution (113).

Proof Just change the variables.Q.E.D.

Finally, once the vectorσ is given, we sampleµ from the conditional distribution,

π(µ|σ ,xn,zn,α, θ̂) =
k

∏
j=1

N(µ j ; µ̃ j , σ̃ j) (120)

where,

µ̃ j =
αw jmj +k j x̄ j

αw j +k j
and σ̃ j =

σ2
j

αw j +k j
(121)

This is the standard computation of the posterior distribution of a gaussian mean when the likelihood and the prior are
both gaussian.

Gibbs Sampler

To sample the actual posteriorπ(θ |xn,α, θ̂) we need to sample from the joint distribution of(θ ,zn) and discard the
labelszn. We use a Gibbs sampler to eventually sample vectors,(θ ,zn) by iterating samples from the two conditional
distributions: The complete posteriorπ(θ |xn,zn,α, θ̂), as indicated above, and the posterior distribution for the labels,
given by

p(zn|θ ,xn,α, θ̂) ∝ p(xn,zn|θ ,α, θ̂) =
n

∏
i=1

p(xi ,zi |θ)

∝
n

∏
i=1

ωzi

σzi

exp

{
− (xi −µzi )

2

2σzi

}
(122)

Equation (122) shows that conditionally on(θ ,xn), the labelsz1,z2, . . . ,zn are independent with probabilities, for
j = 1,2, . . . ,k given by

P[zi = j|θ ,xn] =
1
c

ω j

σ j
exp

{
−

(xi −µ j)2

2σ2
j

}
(123)

wherec > 0 is the normalizing constant. Notice also, that estimation of the labels can be done by using the same joint
samples of(θ ,zn) but now discardingθ instead ofzn. The observedzn will be samples fromp(zn|xn,α, θ̂).
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MODEL SELECTION

Having been presented with two alternative modelsM0 andM, possibly of different dimensions, for the same vector
xn = (x1, . . . ,xn) of observations, when should we chooseM overM0?. This is a decision problem. Once we choose
a loss functionL and prior probabilities for the two alternative hypothesesM0 andM the optimal decision is the one
given by bayes rule:choose the model that minimizes the expected loss conditional on whatever is known.

The optimal values of the invariant actions for ignorance that we have found in this paper provide the decision maker
with a natural class of loss functions. For fix values ofα,δ andν we can quantify the loss of deciding to use modelM
when the true distribution ist by,

L(t,M;α,δ ,ν) = A ∗
M = AM(π∗;α,δ ,ν , t,O) (124)

Thus, we have a collection of rankings for models. In the absence of any observations, when the true distribution ist we
choose modelM overM0 whenA ∗

M < A ∗
M0

. We have possibly different rankings for different choices of the parameters
α,δ , andν . But these are only theoretical, ideal rankings, for they depend on the unknown true distributiont. When
a vectorxn of observations is available it seems reasonable to estimate the unknownt by t̂(xn), e.g. with the M.L.E.,
in each model. The obvious question is: How good is that?. We show below that the caseδ = ν = 0 is asymptotically
equivalent to the plain bayesian ranking, i.e. the one that chooses the model with the highest posterior probability.

In fact, given two alternative modelsM0 andM, observed dataxn, prior probabilitiesP(M0) andP(M) and prior
distributions on the models,πM andπM0 the plain bayesian ranking choosesM overM0 iff

P(M|xn) > P(M0|xn) (125)

By bayes theorem the posterior probabilities are given by,

P(M|xn) =
1
Z

p(xn|M)P(M) (126)

where,Z is a normalizing constant independent of the modelM. The marginal likelihood can be expanded as,

p(xn|M) =
∫

p(xn,θ |M) dV(θ)

=
∫

p(θ |M)p(xn|θ ,M) dV(θ)

=
∫

M
πM(p)

n

∏
i=1

p(xi) dV(p) (127)

=
∫

M
πM(p)enLn(p) dV (128)

and by the standard central limit theorem,

Ln(p) =
1
n

n

∑
i=1

logp(xi)

=
∫

t(x) logp(x) dx+
σt√

n
N(0,1)+o(n−1/2)

= −I0(p : t)+
∫

t(x) logt(x) dx+O(n−1/2) (129)

Thus, whenP(M0) = P(M) replacing (129) into (128) we obtain that the plain bayesian ranking will choose among
the alternative models theM that minimizes,

− logP(M|xn) =− log
∫

M
πM(p)e−n(I0(p:t)+O(n−1/2)) dV +(constant) (130)

This shows that for largen, neglecting lower order terms and the irrelevant additive constant, the modelM with the
highest posterior probability is the one that minimizes,
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LM =− log
∫

M
πM(p)e−nI0(p:t) dV (131)

WhenM has finite volumeV < ∞ the most ignorant prior onM is the uniform (relative todV) given byπM(p) = 1/V
and we have,

LM = A ∗
M|α=n,δ=ν=0 (132)

WhenM has infinite volume, we replace Jeffreys prior with an ignorant priorπM = [1+ αν Iδ ]−1/ν with α → αmin.
The resulting objective functionLM can still be thought as anA ∗

M if we replace in (14) the uniformω with its
approximationπM.

Ignorant Razors

The previous discussion suggests interpreting the optimal values of the actions for ignoranceA ∗
M as measures of

model accuracy and complexity. A general family of Occam’s razors is given by,

R(M) =
∫

M e−ᾱI
δ̄
(p:t)[1+αν Iδ (p : t)]−1/ν dV∫

M[1+αν Iδ (p : t)]−1/ν dV
(133)

The caseν = 0 has the simplest form,

R(M) =
∫

M e−(α+β )Iδ (p:t) dV∫
M e−αIδ (p:t) dV

(134)

obtained when̄α = β andδ̄ = δ . In this case,

A ∗
M =− log

ZM(α +β )
ZM(α)

(135)

where,

ZM(α) =
∫

M
e−αIδ (p:t) dV (136)

By imitating Balasubramanian’s paper we produce a perturbative expansion of the normalizing constants of type (136)
asα → ∞. We should expect to see the effects of theδ -geometry explicitly in this expansion since theδ -connection
coefficients and its derivatives are obtainable from the Eguchi relations introduced in the IG overview.

With the help of a parameterization we write,

ZM(α) =
∫

e−αE(θ) dθ (137)

where,

E(θ) = Iδ (θ : t)−α
−1 log

√
detI(θ) (138)

= J(θ)−α
−1F(θ) (139)

Let us now define,
δ

θ= argmin
θ

Iδ (θ : t) (140)

Now recall thatα is interpreted as a continuous number of apriori independent observations from the true distribution
t (see (79)). Hence, the central limit theorem provides a justification for anα-dependent scaling of the variable of
integration. Letr = α−1/2 and define the new variable of integration,

φ =
√

α(θ−
δ

θ) ⇐⇒ θ =
δ

θ +rφ (141)
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so that,

ZM(α) = α
−κ/2

∫
e−αE(

δ

θ+rφ) dφ (142)

whereκ is the dimension of the manifold modelM. Considering the exponent as a function ofr > 0 and expanding
the functionsJ andF in a Taylor series aboutr = 0 we get,

E(
δ

θ +rφ) = E(
δ

θ)+
∞

∑
j=2

r j

j!
Jµ1···µ j φ

µ1 · · ·φ µ j − r2
∞

∑
i=1

r i

i!
Fµ1···µi φ

µ1 · · ·φ µi

= E(
δ

θ)+
α−1

2!
Jµ1µ2φ

µ1φ
µ2 +α

−1G(φ) (143)

where,

Jµ1···µ j = ∂µ1 · · ·∂µ j Iδ (θ : t)
∣∣
θ=

δ

θ

(144)

Fµ1···µi = ∂µ1 · · ·∂µi F(θ)
∣∣
θ=

δ

θ

(145)

G(φ) =
∞

∑
i=1

α
−i/2

[
1

(i +2)!
Jµ1···µi+2φ

µ1 · · ·φ µi+2− 1
i!

Fµ1···µi φ
µ1 · · ·φ µi

]
(146)

and we have used the fact that whenj = 1 the rhs of (144) is zero. It is easy to verify that equations (144) and (145)
are directly connected to theδ -geometry. In fact, we have

Ji j |
t=

δ

θ

= gi j (
δ

θ) (147)

Ji jk |
t=

δ

θ

=
δ

Γi jk (
δ

θ)+Γ jki(
δ

θ)+Γki j(
δ

θ) (148)

Fj = Γi
ji (

δ

θ) (149)

Fjk = Γi
ji ,k(

δ

θ) = Γi
ki, j(

δ

θ) (150)

Equations (147) and (148) are an alternative form of the Eguchi relations that can be checked by straight forward
computation of the derivatives. Connection coefficients appearing without aδ on top are the metric (Levi-Civita)
δ = 1/2 case, and partial derivatives in (150) are indicated by the sub index following a comma. Obviously (150)
follows from (149) but (149) is not obvious. It is however well known and often left as an exercise in general relativity
text books. For the sake of completeness we provide a proof in the following theorem.

Theorem 18 For any metric gi j with associated connection coefficientsΓk
i j we have,

∂k log
√

det(gi j ) = Γl
kl (151)

Proof The metricG= (gi j ) is symmetric and positive definite. Thus, there exists an orthogonal matrixP, i.e.PTP= Id,
with G = PTDP andD a diagonal matrix with positive entriesλi . Hence,

∂k log
√

det(gi j ) =
1
2

∂k log detG =
1
2

∂k

(
∑
i

logλi

)

=
1
2 ∑

i

1
λi

∂kλi =
1
2

tr D−1
∂kD

=
1
2

tr
(
PTD−1PPT

∂kDP
)

=
1
2

tr G−1
∂kG
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=
1
2

gimgmi,k

= gim 1
2
(gim,k +gmk,i −gki,m)+

1
2

{
gim(gki,m−gmk,i)

}
= Γi

ki (152)

where we have used the cyclic property of the trace, the definition of the connection coefficientsΓi jk = 1
2(g jk,i +

gki, j −gi j ,k) and the fact that the expression within curly brackets is zero. This last fact follows from differentiating the
constant identity∂ j(gimgmk) = 0 so that,

gim(gki,m−gmk,i) = (−gl1l2
,l1

gkl2)− (−gl1l2
,l1

gkl2) = 0

Q.E.D.
Now from the fact that,

∂hµ1
· · ·∂hµk

ehiφ
i
= ehiφ

i
φ

µ1 · · ·φ µk (153)

it follows, by writing the exponential as a power series, that

e−G(φ) = e−G(∇h)ehiφ
i
∣∣∣
h=0

(154)

where∇h ≡ (∂h1, . . . ,∂hκ
), andG(φ) is any multivariate series like (146). Thus, replacing (143) into (142) using (154)

and moving the derivatives outside the integral, we obtain,4

ZM(α) = α
−κ/2e−αIδ (

δ

θ :t)

√
detI(

δ

θ) e−G(∇h)
∫

e−
1
2Ji j φ

iφ j+hkφk
dφ

∣∣∣∣
h=0

(155)

= α
−κ/2e−αIδ (

δ

θ :t)

√
detI(

δ

θ) e−G(∇h)

[(
(2π)κ

detJ

)1/2

exp(
1
2

hiJ
i j h j)

]∣∣∣∣∣
h=0

(156)

where the gaussian integral (155) was computed by noticing that if we letmi = hkJki then we can write the integrand
as,

exp

{
−1

2
Ji j φ

i
φ

j +hkφ
k
}

= exp

{
1
2

Ji j m
imj
}

exp

{
−1

2
(φ i −mi)Ji j (φ j −mj)

}
= exp

{
1
2

Ji j hih j

}
exp

{
−1

2
(φ i −mi)Ji j (φ j −mj)

}
(157)

Let us re-write (146) as,

G(φ) =−
∞

∑
i=1

α
−i/2Ai(φ) (158)

Using (158) and (156) we obtain an expansion ofZM(α) to all orders. For example, if we neglect terms of orderα−2

and smaller we have,

e−G(φ) = 1−G(φ)+
G2(φ)

2!
− G3(φ)

3!
+ · · ·

= 1+
[
α
−1/2A1(φ)+α

−1A2(φ)+α
−3/2A3(φ)

]
+

4 This is a very powerful trick that I learned from Balasubramanian’s paper. Notice however that equation (41) in that paper is missing a factor
−1/2 in the exponent.

A Geometric Theory of Ignorance July 31, 2003 26



1
2

{
α
−1A2

1(φ)+2α
−3/2A1(φ)A2(φ)

}
+

1
6

α
−3/2A3

1(φ)+O(α−2) (159)

the terms within square brackets correspond to the terms in−G(φ) of order lower thanα−2, those within curly brackets
are fromG2(φ), and the last term is, the only other contribution of order lower thanα−2, from G3(φ)/3!. It can be
shown that the terms with an odd number of phi’s, like the terms of ordersα−1/2 andα−3/2 will end up not contributing
anything when (159) is transformed into a differential operator and used in (156). Thus, for model selection, the choice
of δ -geometry will appear in the terms of orderα−1. Let us use the following convenient notation,

f = exp

(
1
2

Jµνhµhν

)
(160)

mj = Jµ jhµ (161)

Thus, using (159) we obtain,

e−G(∇h) f
∣∣∣
h=0

= 1+ α
−1
{

A2(∇h)+
1
2

A2
1(∇h)

}
f

∣∣∣∣
h=0

+O(α−2)

= 1+α
−1
{

[
1
2

Γµ

iµ, jT
i j − 1

4!
Ji jkl T

i jkl ] +

1
2
[Γµ

iµ Γν
jνT i j − 2

3!
Γµ

iµJjkl T
i jkl +

(
1
3!

)2

Ji jkJlmnT
i jklmn]

}
+O(α−2) (162)

where the first term within square brackets is fromA2 and the second is fromA2
1 and,

Tµ1...µi = ∂h1 · · ·∂hi f
∣∣
h=0 (163)

Applying the formulas∂ j f = f mj and∂imj = Ji j recursively we obtain, after a long but straight forward computation,
that

T i j = Ji j (164)

T i jkl = Ji j Jkl +JikJ jl +Jil J jk (165)

T i jklmn = Ji j JklJmn+ (..11 similar terms) (166)

Substituting into (162) and simplifying we find,

e−G(∇h) f
∣∣∣
h=0

= 1+
α−1

24
Ji j Si j +O(α−2) (167)

where,

Si j = 12Γµ

iµ, j −3Ji jkl J
kl −3Γµ

iµ Γν
jν −12Γµ

iµJjkl J
kl +4Ji jkJlmnJ

klJmn (168)

The above tensor is closely related to the Ricci tensor. As it can be readily checked (see MTW p.222, (8.51a,b)), the
Ricci tensor can be written as,

Ri j =−Γµ

iµ, j +Γµ

i j ,µ +Γν
µν Γµ

i j −Γµ

ν iΓ
ν
jµ (169)

We can therefore write (168) in terms of the Ricci tensor as,

Si j =−12(Ri j +Ti j ) (170)
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where the new tensorTi j collects all the left-over terms. We can regard the above equation as the defining equation for
Ti j . We expectTi j to have zero trace when the model contains the true distribution. More detailed computations will be
the subject of an upcoming paper. With this notation we can write once again (167) in the following more useful form,

e−G(∇h) f
∣∣∣
h=0

= 1− α−1

2
Ji j [Ri j +Ti j ]+O(α−2) (171)

From (171), (159) and (156) we get,

− logZM(α) = α Iδ (
δ

θ : t) (172)

+
κ

2
log

α

2π
(173)

+
1
2

log

detJ(
δ

θ)

detI(
δ

θ)

 (174)

− log

(
1− α−1

2
Ji j [Ri j +Ti j ]+O(α−2)

)
(175)

This formula provides a new measure of complexity for models whose volumes have been normalized. If the models
to be compared occupy different volumes in the space of distributions then we need to add logVM as a fifth term to the
above formula. The first three terms for the caseδ = 0 have been previously obtained in connection to the so called
Minimum Description Length (MDL) principle, attributed to Rissanen. The generalδ case, and specially the fourth
term involving the scalar built out of the curvature connection coefficients, were previously unknown.

Each of the four terms of the above expansion has a clear interpretation. The leading term (172) measures the
accuracy of the modelM in terms of theδ -distance from the model to the true distribution and increases linearly with
the amount of prior information (data)α. This first term ensures asymptotic correctness (consistency) asα →∞, i.e. as
more and more prior information is available. The second term (173) penalizes models of high dimension and encodes
parsimony relative to the amount of available prior information. It is linear in the dimensionκ but logarithmic inα.
This term was first discovered by Schwartz in connection with the so called Bayesian Information Criterion (BIC).
This term does not depend onδ in any way. The third term, constant inα, encodes what Balasubramanian calls the
naturalnessor robustness of the model. It is a penalty on models that have few indistinguishable points that are close
to the true one, e.g. when the model looks highly curved from the point of view of the true distribution. The fourth
term (175), let us call itS4, is the most remarkable for it has not previously appeared in the literature. Expanding the
logarithm and neglecting the lower order terms we have,

S4 =
α−1

2
Ji j [Ri j +Ti j ] (176)

We remind the reader that the above quantities are evaluated at a special point inM, namely the closest point tot in
theδ -deviation distance. Also,J depends on the true distributiont as well.

When M 3 t

When the modelM is sufficiently large or informative, so that we can assume that it contains, or at least closely
approximates, the true distribution the action for model selection takes a simpler form.

In fact whent =
δ

θ we have from (147) thatJi j = gi j and the terms (172) and (174) become zero. Hence, asα → ∞

− logZM(α) =
κ

2
log

α

2π
− log

(
1− α−1

2
gi j [Ri j +Ti j ]

∣∣∣∣
θ=

δ

θ

)
+O(α−2) (177)

Now considerπ to be any prior scalar density that peaks at
δ

θ asα → ∞. For example a natural choice is given by the
ignorant(δ ,0)-prior,
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π(θ) = e−α Iδ (θ :
δ

θ) (178)

For any such priorπ the action for model selection (177) can be thought as an approximation to the global action given
modα−2 by:

− logZM(α) =
κ

2
log
(

α

2π

)
− log

(
1− α−1

2

∫
M

(R+T)π dV

)
(179)

whereR is the Ricci scalar andT is the trace ofTi j plus any term, which may depend onπ, that becomes negligible
around the peak. Notice that when comparing models with the same number of parametersκ, the first term in (179)
becomes an irrelevant constant and the action becomes equivalent to the integral, i.e., the prior expectation of(R+T).

The practical utility of the new ranking procedures introduced in (179), (177) or the original (172-175) need to be
tested on real and simulated data. Preliminary computer experiments of the effect of the geometry for model selection,
just at the level of correct volume normalization in the MDL principle, are currently being investigated by Eitel Lauria
and myself. These experiments show that adding (to the MDL score) a simple approximation to the logarithm of
the total volume occupied by a binary bayesian network of a given structure never hurts. In fact the modified score
chooses the correct model in (on the average) about 30% more cases than the standard MDL score across a wide range
of structures and sample sizes. These results are encouraging but nothing is known, at the moment of writing, about
the actual performance of the new curvature term introduced in this paper.

AUTOMATIC MODEL PRODUCTION

In this section we show how the actions for model selection, introduced in the previous section, can be transformed into
actions for the automatic production of statistical models. The resulting theory seems to be completely unexplored and
extremely rich. What follows is just a very first attempt at describing what seems to me as an ocean of new statistical
questions.

Simply put. Take the exp of (179) and elevate the obtained score to the status ofuniversal rankingfor all the
unknowns, i.e., the dimensionκ, the information metricgi j and the unnormalized priorπ, or equivalently its log
likelihood f , where π = e− f . When T = |∇ f |2 and τ = (2α)−1 the obtained score is equivalent modα−2 to
minimizing,

F =
∫

M

[
τ(R+ |∇ f |2)− κ

2

]
(4πτ)−κ/2e− f dV (180)

over smooth functionsf satisfying the normalization condition,∫
M

(4πτ)−κ/2e− f dV = 1 (181)

Perelman’s Action

In a recent paper5 Grisha Perelman shocked the topology world with what the experts say may be a final proof of the
so called geometrization conjecture for three-manifolds. This implies the famous Poincaré conjecture. It is much more
famous now that there is a $1M prize for its proof6. What shocks this pedestrian statistician is that (180) is the action
that produces the flow of metricsgi j (τ) that is able to smooth out all manifolds and prove that topologically, spheres
are not doughnuts in any dimensions. I believe that the entropy formula for Ricci flows, that solves the presumably
esotericball 6= doughnutproblem has an statistical interpretation with the potential for unifying not just heaven and
earth but the mind with the moon. In the meanτ ime,

5 seearXiv:math.DG/0211159
6 seewww.claymath.org
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Truth, time &τemperature

time is cold Truth
and
Truth is hot time.
Red hot is a true first second

of love.
But all Truth is temporal.
Ergo, F$$$.
that’s true

capitalism.
T is t andτ

τ & t is T & T
T is t
andτ is T
god save TT&T
god saveτT&t
god save Tτ&t
god save the t.
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