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Abstract� Entropic priors assign probabilities by combining in an insep�
arable way the information theoretic concept of entropy with the underlying
Riemannian geometry of the hypothesis space� These priors form the corner�
stone of a developing new and more objective Bayesian theory of inference�
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� Introduction

This assay is about a new method for building a prior model on the parameters
of a regular family of distributions� Parts of this method have been know for
some time but the full generality of entropic priors is a recent discovery� With
this single procedure it is possible to reproduce useful and well�known results
in diverse areas such as time series image processing and empirical bayes� A
deeper understanding of the basic ideas underlying the method could lead to
better solutions for these applications as well as to a new and more objective
theory of inference�
The method is summarized with the following formula� �Given a regular

parametric model containing probability measures P� the entropic priors on �
are given by

Pr�d�j�� ��� � expf��I�� � ���gg���d� ���

where � is a positive scalar parameter �� is an initial guess for � I�� � ���
denotes the Kullback number between the probability measures P� and P�� and
g is the determinant of the Fisher information matrix at ���
Equation ��� has a number of desirable properties� it is of general applicabil�

ity it is invariant under smooth changes in the coordinate systems of both the
parameter and the data spaces and it contains the methods of maximum en�
tropy and Je�reys� noninformative priors as two opposite poles ����� �� ���
Also entropic priors are essentially implied by the assumptions of invariance and
no apriori correlations �see Skilling �������	�� and also Shore and Johnson ������
Rodr��guez ������������
There is a very simple rationale behind equation ���� The amount of prob�

ability assigned to the parameter � decreases exponentially with the Kullback
distance from the initial guess of ��� That is to say the more di�cult it is to
discriminate the measure P� from P��  the more prior probability is given to it�
The parameter � controls the sensitivity to changes in the distance� Thus reli�
able ���s should go with large � while unreliable guesses should be given small
�� In the latter case the dependence of prior probabilities on � is controlled not
so much by the Kullback number �and therefore by the initial guess of ��� but
by the surface area of the model given by the invariant measure g���d��
The entropic priors assign prior probabilities by combining in an intricate

way the information theoretic concept of entropy with the underlying Rieman�
nian structure of the parametric model� This combination of entropy and ge�
ometry is even more intricate than suggested by the notation of equation ����
for the information metric and therefore also its determinant g arise from
in�nitesimal variations of the Kullback number �see equation �
� below��
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� Background� Entropy� Geometry� and Priors

Underlying the problem of inference we �nd the following fundamental ques�
tion� How should the data and the prior information about a physical process
be used to generate a manifold of distributions and a measure of prior uncer�
tainty� The relevance of this question is clear for once we �x the model and
the prior bayesian inference is reduced to the computational problem of poste�
rior probabilities� Needless to say unless the meaning of prior information

is explicitly de�ned there is no general solution to this problem� However if
a parametric model is available for the data and all the prior information �be�
sides the knowledge of this parametric model� is contained in the initial value
of the parameter then the entropic priors as de�ned by equation ��� provide
invariant assignments of prior probabilities with desirable properties�
Entropic priors are therefore part of the answer to the fundamental ques�

tion stated above� Although they solve only half of the problem they solve the
important half� Due to the lack of general methods for transforming prior infor�
mation into assigments of prior probabilities there is greater agreement among
statisticians about models than about priors� The maximum entropy formalism
�see Jaynes ����� and the total ignorance priors obtained from invariance �see
Je�reys ��� and Jaynes ����� are two isolated exceptions� It is remarkable that
entropic priors include both methods as extreme special cases�
An overview of the main quatities that de�ne formula ��� is presented below�

To this aim it is necessary to introduce some standard de�nitions and results�

��� The Kullback Number

Let the data space be an arbitrary Haussdorf space X endowed with the Borel
sigma �eld B� In most applications X is just a measurable piece of IRd but it
is equally easy to deal with the more general case� The central quantity in the
theory is the Kullback number I�P � Q� between a probability measure P and
a ���nite measure Q both de�ned on the measurable data space �X �B�� De�ne

I�P � Q� �

Z
P �dD� log

dP

dQ
�D� ���

when P is absolutely continuous with respect to Q and the integral exists and
de�ne it as � otherwise� When both P and Q are probability measures abso�
lutely continuous with respect to each other the above integral always exists
even though it may be in�nite �see Kullback ��� p� ��� Moreover in this case
a simple application of Jensen�s inequality shows that I�P � Q� is non negative
and that it is zero only when P � Q� This last property makes it very similar
to a metric but of course is not symmetric and it does not satisfy the usual
triangular inequality�
In statistical language the Kullback number is the expected log�likelihood

ratio of P to Q when P is the �true� model� In information theoretic terms

�



it is said to measure the mean information per observation for discrimination
in favor of P and against Q when sampling from P � In stronger information
theoretic language it is the expected amount of information transmitted by the
message� �The information source has been moved from Q to P�� All these
well stablished interpretations convey the same idea of separation of P from
Q� But the large deviation property reproduced below explicitly quanti�es this
separation�
Let X � f�� �� ���� kg and let q be the probability measure that assigns proba�

bility qj to the jth element ofX � We can imagine an urn with known proportions
qj of balls type j for j � �� �� ���� k� If we draw n balls from this urn and we
denote by nj the number of observed balls of type j then the probability of
observing a frequency distribution p�� p�� ���� pk with pj � nj�n is given by the
multinomial

Pr�pjq� � Pr�n�� ���� nkjq� � n�

n��n�����nk�
q�

n����qk
nk ���

i�e� the chance of seeing a p�distribution when sampling n times from a
q�distribution� Taking the logarithm on both sides of equation ��� and using
Stirling�s formula up to �rst order i�e�

logm� � m logm �m  o�m� ���

we obtain after a little simpli�cation that

logPr�pjq� � �n
kX

j��

pj log
pj
qj
 o�n� ���

Therefore when all the njs are large this last equation together with ���
imply

Pr�pjq� � e�nI�p�q� �	�

which has the exact form of ���� Notice that since n is large but �nite there are
only a �nite number of p�distributions and that is why the g in �	� is constant�
there is no underlying continously parametrized manifold of distributions only
a �nite number of them� Also we obtain once more the parameter � associated
to the amount of information about ��� In this case however the term amount

of information takes the explicit form of the number of observations from
the q�distribution�

��� Fisher Information Metric

The connection between � and amount of information in the sense of number
of observations holds in general as it is shown below� Before we prove it we
notice the classic relationship between entropy and geometry i�e� the natural
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Riemannian metric on a regular model appears from second variations of the
entropy� More explicitly the Riemannian length of a tangent vector v attached
to the point � is proportional to I�P���v � P�� when � is small� To see this just
consider �for �x � and v� the function u��� � I�P���v � P�� that has a global
minimun of zero at � � �� Expanding up to second order terms in � we have

u��� � u���  �u����  
�

�
��u�����  o���� ���

by straight forward computation we �nd u��� � u���� � � and

u����� �
X
i�j

vi
�Z

�

p�

�p�
��j

�

p�

�p�
��i

P��dD�

�
vj ���

where p� � p��D� denotes the density of P� with respect to an arbitrary but
�x dominating measure� The last formula de�nes a quadratic form on tangent
vectors v� Notice that the quadratic form must be positive de�nite because u���
has a global minimum at � � �� The matrix of this quadratic form is known as
the Fisher information matrix and the induced Riemannian metric is known as
the information metric� �see ������ or ������ Thus

I�P���v � P�� �
��

�

X
i�j

vigij���v
j  o���� �
�

where gij��� are the elements of Fisher�s matrix�

��� Prior Information is More Data

An interesting question suggested by ��� that turns out to have a surprisingly
simple and useful answer is the following� What are the entropic priors when the
data space consists of vectors D � �x�� ���� xn� of independent and identically
distributed components�

To answer the above question let P
�n�
� and g

�n�
ij ��� denote the corresponding

quantities in the data space Xn� The components are iid so

P
�n�
� �dD� �

nY
i��

P��dx
i�� ����

Therefore from this ��� and Fubini�s theorem we have

I�P
�n�
� � P

�n�
��
� � nI�P� � P���� ����

From equations �
� and ���� we can write

�Regular models are smooth Riemannian manifolds relative to the Haussdorf topology of
the Hellinger distance�
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g
�n�
ij ��� � ngij��� ����

and taking the determinant on both sides of this matrix equation we obtain
g�n� � g that together with ��� and ���� imply

Pr�n��d�j�� ��� � Pr�d�jn�� ��� ����

Equation ���� links the positive scalar parameter � to the number of ob�
servations� It suggests to regard � as a kind of continuous virtual number of
independent observations supporting the choice of �� as the initial guess� This
interpretation squares nicely with our previous results� More over from equa�
tion ���� we can write the posterior as

Pr�n��d�jD��� ��� �
nY
i��

n
P��dx

i�e��I������
o
g������d� ����

and therefore the posterior densities with respect to the invariant measure on
the manifold satisfy

	�n���jx�� ���� xn� �� ��� �
nY
i��

	��jxi� �� ��� ����

The last equation not only provides a recursive procedure that simpli�es the
computation of the posteriors when new data are available but it also reinforces
the above interpretation for �� Given the classic connection between the Kull�
back number and the exponential family a more detailed examination of the
form of the posterior in the exponential family case �specially for � close to ���
should produce interesting and informative results�

� Applications

��� Empirical Bayes

The empirical Bayes approach to statistics is due to H� Robbins who has demon�
strated the usefulness of this technique in both the parametric and nonparamet�
ric cases� However in the parametric case a prior over the parameters is needed
and as it is shown here with an example equation ��� supplies one that makes
sense�
Efron and Morris were the �rst to provide an empirical Bayes context to

Stein�type estimators but their priors and unbiased method of estimation were
chosen in an ad�hoc manner explicitly designed to obtain the result �see Robbins
collection of selected papers �
� and list of references on pages �����The sim�
plest non�trivial application of entropic priors generates the celebrated Stein�s

	



shrinking phenomenon without the ad�hockeries and at the same time provides
a rationale for it�
Let x � �x�� � � � � xk� be a single observation from a k�variate Gaussian dis�

tribution with unknown mean vector � but known variance matrix ��I with
� 
 �� i�e� P� � N ��� ��I�� In this case the Kullback number is given by

I�� � ��� �
�

���
E�fjx� ��j� � jx� �j�g � �

���
j� � ��j� ��	�

i�e� proportional to the square of the euclidean distance between � and ��� Thus
it follows directly from equation �
� that the information matrix is proportional
to the identity and that the invariant measure is proportional to the Lebesgue
measure on IRk� Therefore replacing in ��� we obtain the entropic prior

Pr�d�j�� ��� � exp
�
� �

���
j� � ��j�

�
d�� ����

The prior is then N
�
���

��

� I
�
� Let f�xj�� ��� denote the marginal density of

the data vector with respect to the Lebesgue measure on IRk� By conditioning
on � and using the above entropic prior we have

f�xj�� ��� �
Z
exp

� ��
���

�jx� �j�  �j� � ��j�
�	

d� ����

thus after replacing the equation

jx� �j� � jx� ��j�  j�� � �j� � �hx� ��� � � ��i ��
�

and completing the square inside the exponential it follows that

f�xj�� ��� � e

n
��jx���j�
��������

o Z
e

�
������j������ �

���
����x��j�

���

	
d�

from where we can immediately deduce that the marginal distribution of x is
given by

f�xj�� ��� � N



���

� �

�
��I

�
����

and that the posterior distribution of � after observing a single x is proportional
to the expression inside the integral i�e�

	��jx� �� ��� � N



x� �

� �
�x� ����

��

� �
I

�
� ����

Hence for quadratic loss the Bayes� estimate of � is not the single observed
vector x but the mean of the posterior that shows a shrinkage towards the
guessed value ��� The amount of shrinkage can be estimated by extracting the
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information about � contained in the observed vector x� To see this let � � �
���

and notice that from ���� and ���� it follows that�

f�xj�� ��� �
kY

j��

N



�j��

��

�

�
����

and
E��jx� �� ��� � x� ��x� ���� ����

The idea is to replace in ���� the most conservative estimator of the unknown
� that could be obtained from the inference problem de�ned by ����� Guided
again by equation ��� it follows that in each independent component of x the
total ignorance prior about the parameters of the j�th problem is given by�

�
�
d�j�� d�

�
� d�d�j�

��
� ����

Thus the ignorance prior for all the parameters is�

� �d��� d�� � d�d��
��

����

This prior makes � ignorant not only of �� but also about the dimensionality k�
From the prior ���� and the likelihood ���� it follows that

Pr�d�j��� x� � �
k

�
�� exp

���jx� ��j�
���

	
d�

and this is a gamma distribution with mean

E ��j��� x� � �k � ����
jx� ��j� � ��	�

Replacing the unknown � in ���� by the right hand side of ��	� we obtain the
estimator�

�� � x� �k � ���
�

jx� ��j� �x� ��� ����

which is the original Stein�s estimator having uniformly better risk than x for all
choices of �� when k � �� Thus in dimensions grater than two x is inadmissible
�see for example �	 pages �������� These are all classic results of the theory of
estimation produced e�ortlessly from equation ����
Stein�s estimator exempli�es the general �Entropic� Empirical Bayes ap�

proach� �rst reduce the problem of estimation of the �multi� parameter � to the
estimation of the positive scalar parameter � as in ����� Second replace in the
posterior distribution of � the unknown � by its estimator as in ���� and �����
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��� Time Series

It is shown in this section that the general formalism of entropic priors could
be applied to solve time series problems� Preliminirary results for the model of
a parametric signal plus white noise are shown�

�	�	� The Signal Manifold

Let us assume that the vector of observations x � �x�� � � � � xN � collected at
times t�� t�� � � � � tN  not necessarily equally spaced can be modeled by�

xl � f�tl � ��  el� for l � �� �� � � � � N ����

where � � ! 	 IRk and the set

S �
�
r��� � �f�t�� ��� � � � � f�tN � ��� � IRN � � � !


��
�

is a smooth k�dimensional surface in IRN � The intrinsic geometry of S is char�
acterized by its metric tensor�

gij��� � h �r
��i

�
�r

��j
i �

NX
l��

fi�tl� ��fj�tl� �� ����

where fi�tl� �� denotes the partial derivative of f�tl� �� with respect to �i� The
errors el are assumed� to be independent for di�erent times and gaussian with
mean � and variance �� for all times� Hence the joint likelihood function for �
and � denoted by L��� �� is given by

L��� �� � ��N exp

�
� �

���

NX
l��

�
xl � f�tl� ��

���
����

that de�nes the hypothesis space of all the N�variate gaussian probability mea�
sures with mean vector on the surface S and variance matrix ��I� The Rieman�
nian geometry on this hypothesis space is intimately related to the geometry
on S� The metric tensor �or Fisher information matrix� in this space can be
obtained by taking the derivatives of the log�likelihood �see equation ��� or
Amari ����� Rodr��guez ��������

l��� �� � �N log� � �

���

NX
l��

�
xl � f�tl � ��

��
� ����

The derivative with respect to �j gives the tangent vector �j  in the j�th
coordinate direction given by

�This assumption follows from ���� make � denote an arbitrary distribution for the errors
with a given �nite variance� 	at initial� and large ��






�j �
�

��

NX
l��

�
xl � f�tl � ��

�
fj�tl� �� for j � �� � � � � k� ����

and the tangent vector in the direction of � is given by

�� � �N

�
 
�

�	

NX
l��

�
xl � f�tl� ��

��
� ����

Thus the components of the metric tensor in the ��directions are�

gij��� �� � E��� ��i�j�

�
�

��

NX
l��

fi�tl� ��fj�tl� ��

�
�

��
gij���

and it follows from ���� and ���� and the assumption of independence of the
errors that

gj���� �� � E��� ��j���

� E

��
��N

�	

X
l

elfj�tl� ��  
�

�


X
l�m

e�l emfj�tm� ��

��
�

� ��

The last element of Fisher�s matrix may be computed from the derivative of
equation ���� ��� � We have

g����� �� � �E���

�
���
�

� �E
�
N

��
� �

��

X
l

e�l

�

�
�N

��
�

Hence the matrices �g��� ��� and �g���� satisfy

�g��� ��� �
�

��



�g���� �
� �N

�
�

The total ignorance prior ��d�� d�� can be written in terms of the square
root of the determinant of the previous matrix� We have

��



��d�� d�� � ���k��� jg���j �� d�d�� ����

Notice that when � is assumed to be known the non�informative prior for �
coincides with the k�dimensional surface area of S and the Kullback number is
similar to ��	�� By looking at equation ���� it is therefore reasonable to estimate
� by �� such that

r���� � x� �

� �
�x� r����� � ��	�

It is natural to expect �� to show properties similar to Stein�s estimator
but only when the surface S is su�ciently "at between �� and ��� The exact
solution could be computed �or at least approximated in speci�c examples� and
it would provide a new way for recovering a signal buried in white noise�

�	�	� Separating Frequencies from Amplitudes

In the rest of this section we analize the time series estimation problem when
a little more structure than just S is assumed for the signal� Computations
are signi�cantly simpli�ed if linear �usually nuisance� parameters are separated
from non�linear �frequencies like� parameters� Following Bretthorst ����� let us
assume that the signal can be modeled by�

f�t� �� �
mX
j��

BjGj�t� � ����

where � � �B�� � � � � Bm� �� � � � � k�m� � �B��� Using ���� we can write�

gij �
NX
l��

Gi�tl� �Gj�tl� � for i� j 
 m ����

which are independent of B� The other components are given by

gia �
mX
j��

Bj

�
NX
l��

Gi�tl� �Gja�tl� �

�
for i 
 m� a 
 m ��
�

where Gja denotes the partial derivative of Gj with respect to �a � a�m�
These components are linear in B� Finally we can write�

gab �
X
i�j

BiBj

�
NX
l��

Gia�tl� �Gib�tl� �

�
for a� b 
 m�

These components are quadratic in B� The whole matrix �g�B��� can be
split into four blocks�

��



�g�B��� �


 �
gB�B

� �
gB��

��
gB��

� �
g���

� � � 
 �Indep� of B� �Linear in B�
�Linear in B� �Quadratic in B� �

�

The determinant of this matrix is the sum of products of elements taken from
each row and column� All having the form�

� u��B��
� B��

� � � �B�m
m with �j � � and

mX
j��

�j � ��k �m�� ����

Hence the determinant shows the following homogeneity property�

jg��B� �j � ���k�m� jg�B��j � ����

More over
�
gB�B

�
is a symmetric positive de�nite matrix that appears also

in the likelihood�

L�B�� �� � ��N exp

��
� ��
���

mX
j��

�
xj �

mX
l��

BjGj�tl� �

��
��
�

� ��N exp
�
�NQ

���

	

where Q is de�ned by

Q � d� � �

N

X
j

hjBj  
�

N

X
i�j

BiBjgij ����

also

d� �
�

N

NX
l��

�
xl
��

and hj �
NX
l��

xlGj�tl� �� ����

Thus by diagonalizing
�
gB�B

�
we simplify not only the ignorance prior but

also the likelihood function� It is therefore straight forward to re�write the
analysis in ��� using equation ��� as the prior� For � � � �total ignorance case�
we obtain the posterior distribution for the frequencies given by�

Pr�djx� �� �� �
p
jg�h� �j

�
�� mh�

Nd�

��N�k�m

�

d ����

which is di�erent from the result obtained in ���� However when N is large the
generalized periodogram h� peacks about the �true�  but from equation ����

��



the term
p
g�h� � increases only polynomially in h which is negligible com�

pared to the other term that increases exponentially in h� Hence for large N
equation ���� coincides with the result in Bretthorst� We have computed both
posteriors on simulated data containing one or two harmonics observing always
that the two curves become indistinguishable very rapidly for N around ���
Hence non�informative entropic priors reproduce the results in the Bayesian

spectral analysis of Bretthorst� More over entropic priors make possible to
incorporate de�nite prior knowledge �e�g� about the frequencies � inproving
the estimate of the signal�

��� Image Reconstruction

All image reconstruction problems are inverse problems� The mathematics of
image reconstruction can be reduced in theory to the inversion of a linear
functional operator� The �approximate� linear functional relation between the
input �object� and the output �data� is �xed by the physics of the particular
situation but the basic idea common to most methods is very simple �see �����
The object f to be reconstucted is hit with some kind of radiation and a
characteristic g of the scattered output �eld is recorded� Typical examples
include� radio frequency in NMR x�rays in computed tomography or sound
waves in ultrasound imaging� Usually g is linearly related to f through

g � Af ����

where A is a linear functional from the hypothesis space F �also known as image
space or solution space� into the data space G� The functional A is typically a
Fredholm integral operator that can be speci�ed in terms of some kernel K�x� y�
in the form�

�Af��y� �

Z
K�x� y�f�x�dx� ��	�

Hence in theory the object f is obtained from g by

f � A��g ����

but in practice the value of g is only known with noise at N discrete points
y�� y�� � � � � yN � What is observed are N noisy data

Dj � g�yj�  �j ����

�

Z
K�x� yj�f�x�dx  �j for i � �� � � � � N�

Therefore in reality what needs to be solved is not the algebraic deterministic
problem ���� but the inference problem� Guess f from the N noisy data� Notice
that ���� is equivalent to ���� with a very large �possibly in�nite� dimensional
��

��



�	�	� Digital Imaging

A discretization of x into pixels transforms problem ���� into a regression prob�
lem but with more parameters than data� The data alone is not enough for
ranking all the possible pictures in F  and a prior distribution over F is needed�
Prior knowledge about the set of possible images can be used to reduce the

dimensionality of the hypothesis space F  providing an encoding of the image
with fewer number of parameters than the number of pixels� However if nothing
is known about the picture the space F can be identi�ed with the set of all the
non�degenerate probability measures over the �nite set of pixels� The Kullback
number and invariant measure in this space of discrete distributions are easily
computed from their respective de�nitions� Replacing in ��� it follows that the
log of the entropic prior density is

log

�
Pr�df j��m�

df

	
� ��

X
i

fi log
fi
mi

 
�

�
log

�Q
i fi

��
�

where fi � f�xi� i�e� proportion of luminosity assigned to the i�th pixel and m
denotes the initial guess for f �
The likelihood of f is �xed by �xing a distribution for the errors in ���� and

hence the most likely posterior choice for f is the solution of�

max
f � F

�
L�f� � �

X
i

fi log
fi
mi

 
�

�
log

�Q
i fi

�
� ����

whrere L�f� denotes the logarithm of the probability of the data given f � The
MAP de�ned by the solution of ���� is what is computed by the celebrated
MEMSYSs algorithm of Skilling Gull and their co�workers �see ��	��� It is
interesting to notice that the last term in ���� i�e� the invariant measure on
F was discovered experimentally by testing di�erent functions of f to penalize
values close to zero �Skilling personnal communication see also ��� p� 

���

�	�	� An Example with Binary Images

To illustrate the use of the main formula ��� when speci�c prior information
is available consider the following simple problem� On a square of M pixels
�e�g� the terminal screen� a few rectangles of random lengths and widths are
allocated at random �e�g� by turning on the pixels of the rectangles�� The image
is then destroyed as follows� each of theM pixels is independently reversed with
probability � � q � ���� It is required to recover as close as possible the original
image from these data�
Let�s denote by � � ���� � � � � �M� the unknown image where

�j �

�
� if j�th pixel was originally on
� if j�th pixel was originally o�

��



similarly let z � �z�� � � � � zM� be the observed pixels �i�e� the pixels of the
destroyed image� Thus the likelihood is given by�

Pr�zj�� q� �
MY
j��

n
qjzj � �j j��� q��� jzj � �j jo ����

Let�s denote by P��q the probability measure in ����� The Kullback number for
a given initial guess P��r simpli�es to

I �P��q � P��r� �MI�q � r�� ��� �q� log



r

�� r

� MX
j��

���j �� �j� ����

where ��A� is � if A is true and zero otherwise and

I�q � r� � q log
q

r
 ��� q� log

�� q

�� r
�

The entropic prior density is then given by

	��� qj�� �� r� � exp f��I �P��q � P��r�g ����

but relative to the invariant measure on the hypothesis space� The information
given in the problem is not su�ciently precise to �x this measure from �rst
principles� However it is clear that it should decrease rapidly with the number
of rectangles of the image � to agree with the information that � contains only
a few rectangles� A useful choice is

��d�� dq� � exp f��NR���g d�dq ����

where � is a positive scalar parameter �like �� and NR��� denotes the number
or rectangles in the image �� By using equations ���������� it follows that
the posterior mode is obtained by solving�

max
�� q

��
�M log��� q�  log



q

�� q

� MX
j��

���j �� zj� 

���� �q� log r

�� r

MX
j��

���j �� �j� � �MI�q � r�� �NR���

��
� � ����

An algorithm to approximate the solution of problem ���� could be designed
but only after deciding what to do with the parameters� �� �� r� �� A fast and
simple smoothing of the data will �x r and � and then �assumming enough
computational muscle� solve ���� for di�erent values of � and �� Although ����
is the problem to solve when the proportion of pixels on in the original image

��



� is small �i�e� few rectangles in �� then q can be closely approximated from the
data� In this case the optimization problem ���� simpli�es to

min
�

��
�

MX
j��

���j �� zj�  �

MX
j��

���j �� �j�  �NR���

��
� � ��	�

where the positive parameters � and � are de�ned by�

� � ���� �q� and � �
��

log q
q��

�

A further simpli�cation is obtained by writingX
j

����j �� zj�  ����j �� �j�� � ��  ��
X

zj � �j

���j �� zj�  
X
j

��zj �� �j�

Hence replacing in ��	� dividing through by � �which is postive� and rede�ning
� accordingly the optimization problem to be solved reduces to�

min
�

��
�

X
zj � �j

���j �� zj�  �NR���

��
� � ����

The exact solution of the above combinatorial optimization problem is out of
the question with a regular desktop computer� the search space of �s has �M

or more than ��	���� elements for a square of ���  ��� pixels� However an
stochastic optimization algorithm �like simulated annealing� rapidly produces
high quality solutions	 �see �����
It seems pro�table to exploit the use of entropic priors in image processing

problems of this kind�

� Towards a Bayesian Theory of Information

Geometry

The main advantage of having a geometric theory of inference is the enhance�
ment on imagination that it produces� Geometry allows to see by relating fa�
miliar images from our every�day three dimensional space to otherwise abstract
mathematical objects living in obscure spaces� By thinking of the hypothesis
space �i�e� parametric model� as a Riemannian manifold we can picture the
possible probability measures for our data living as points on a curved surface�
With this imagery in mind and the paraphernalia of modern geometry the the�
ory of inference is rapidly developing into a new science that Amari has baptized
as information geometry �� p� ���

�I have implemented the algorithm in Quick
C and it takes a few minutes runnig on a
�����Mhz to obtain solutions comparable to those in ����

�	



��� Robustness and the Lie Derivative

This section contributes to the ongoing development of information geometry
by showing how the geometric concept of the Lie derivative is naturally related
to the statistical concept of robustness�
Statistical robustness is a desirable property of an inferential procedure� It

can be de�ned qualitatively as the stability of the procedure against small
changes in the assumptions� The pictures that come to mind almost simmulta�
neously with this de�nition are those of solids able to relax back to their original
form after feeling the e�ects of a small deformation or strain� It is therefore not
surprising that ideas developed in the physical theories of elasticity and the
mechanics of continuous media are found useful to quantify statistical robust�
ness�
One aspect of the intrinsic robustness of a hypothesis space can be quanti�ed

by the strain tensor �see for example �� pages ��� and ���������� Recall that
the strain tensor is a covariant tensor of order two �i�e� a bilinear form on
vectors� that quanti�es how the metric of the space changes under deformations
de�ned by a vector �eld� Evidently this de�nition can only encode one aspect
of robusteness� the robusteness of the metric� However remember that the
strain tensor is obtained as the Lie derivative of the metric with respect to a
vector �eld and that the Lie derivative is de�ned not only for metrics but for
arbitrary tensors on the manifold� Hence by taking Lie derivatives it is possible
to quantify the rate of change with small deformations of the space for many
statistically meaningful quantities de�ned on the model� A non exhaustive list
of quantities for wich it would be desirable to know the Lie derivative and their
properties includes�

�� Information matrix �metric tensor� gij���

�� Total ignorance prior
pjg���jd� �pjg���jd�� � d�� � � � �� d�k

�� Entropic prior exp f��I�� � ���g g���d�
�� Posterior distribution P��dx� exp f��I�� � ���g g���d�
�� A parameter �scalar function� � � ��P��

	� The gradient of a scalar function �In"uence function�

�� The Riemann curvature tensor�

The total ignorance prior has been written with the wedge product of dif�
ferential forms �or Cli�ord algebra� to emphasize the fact that measures on the
�oriented� manifold are really totally antisymmetric tensors and therefore their
Lie derivatives are well�de�ned�
There is no technical problem in computing the Lie derivatives of the above

list� In fact ready�made formulas for the items ���	 and � can be found in

��



any good book on modern geometry� The derivatives of item � and a na#�ve
version of item � can be computed directly from the de�ning formula for the
Lie derivative of a tensor� However before rushing to write down the formulas
it would be convenient to subject the posterior to a more detailed examination�
One is dealing here not only with the manifold of the model but also with the
manifold of the data space and a deeper analysis should consider deformations
of both of them� It would be very convenient to know how the posterior changes
with small kicks applied to the model and the data space�
By looking at statistical robustness with this geometric eye new avenues

for the imagination open up and previous approaches can be seen from a dif�
ferent perspective� Consider for example the approach based on the in"uence
function i�e� the G$ateaux derivative of a parameter evaluated at a point mass
distribution� The only deformations of the underlying space that can be en�
coded with this approach are those characterized by vector �elds of central
forces� G$ateaux derivatives apply to the model a very small class of local kicks�
Only deformations of the space that send �locally� every probability measure
closer to a �x point are considered�
From the more global perspective of information geometry the Lie derivative

as a technical tool for quantifying robustness is only one example of the many
possibilities that Lie theory can bring to statistical inference� To illustrate the
use of some Lie theory in statistics the gaussians and the discrete distributions
are introduced below as examples of Lie groups�

��� Lie Theory and the Gaussians

The one dimensional gaussians i�e� the space of all the probability measures
with Lebesgue densities given by gaussian curves not only has the manifold
structure of the Lobachevskian plane but also the algebraic structure of an
a�ne group� The group operation is de�ned by

N
�
�� ��

� �N �m� s�
�
� N

�
� �m� ��s�

�
for ��m � IR and �� s 
 ��

The identity and inverse elements are given by�

e � N ��� �� N
�
�� ��

���
� N



� �
�
��
�

��

�
����

and it is not di�cult to show that the group operation and the operation of
taking the inverse are C� maps�
It is interesting to note that by decomposing the group of isometries into

one parameter subgroups the familiar statistical transformations of changing
location and scale are automatically generated� To see this recall that the
group of direct isometries of the Lobachevskian plane is the connected compo�
nent of the identity of SO��� �� which is isomorphic to SL��� IR��f��g which
is isomorphic to the group of linear�fractional transformations with coe�cients

��



given by the entries of the matrices in SL��� IR�� It is worth noting by pass�
ing that it follows from here that the group of symmetries of the hypothesis
space of one dimensional gaussians are nothing but the orthochronous Lorentz
transformations of IR	

� i�e� three dimensional space�time��
The Lie albegra of the gaussians is then given by sl��� IR��f��g and the one

parameter subgroups of isometries are obtained from the exponential function
exp�tX� with t � IR and X � sl��� IR��f��g� The matrices X have zero trace
and real entries i�e�

X �



a b
c �a

�
and X� � �I

with a� b� c � IR and � � �a�  bc�� Therefore it follows that

etX �

�
� cosh�

p
�t�  ap

	
sinh�

p
�� bp

	
sinh�

p
��

cp
	
sinh�

p
�� cosh�

p
�t� � ap

	
sinh�

p
��

�
A � ��
�

Replacing in ��
� di�erent values for a� b and c the following four one�parameter
subgroups are obtained�

I	 The Group of Location Transformations The generator is the matrix

X �



� �
� �

�

obtained from ��
� when a � c � �� b � � and � � �� The group elements are�

exp�tX� �



� t
� �

�

with corresponding linear�fractional transformation�

z� �
�z  t

�z  �

or in terms of the components z � ��� ��

�� � �  t

�� � �

with t � IR�

�




II	 The Group of Scale Transformations The generator is the matrix

X �



� �
� ��

�

obtained from ��
� when a � �� b � c � � and � � �� The group elements are�

exp�tX� �



et �
� e�t

�

with associated linear�fractional transformation�

z� �
etz  �

�z  e�t
� e�tz

or in terms of the components z � ��� ��

�� � ��

�� � ��

where � � e�t 
 ��

III	 The Group of Hyperbolic Rotations The generator is the matrix

X �



� �
� �

�

obtained from ��
� when a � �� b � c � � and � � �� The group elements are�

exp�tX� �



cosh t sinh t
sinh t cosh t

�

with associated linear�fractional transformation�

z� �
cosh�t�z  sinh�t�

sinh�t�z  cosh�t�

IV	 The Group of Euclidean Rotations The generator is the matrix

X �



� �
�� �

�

obtained from ��
� when a � �� b � �� c � �� and � � ��� The group elements
are�

exp�tX� �



cos t sin t
� sin t cos t

�
�

��



��� The Discrete Distributions as a Lie Group

Consider the hypothesis space of all the non�degenerate probability measures
over a �nite set� The elements of this set can be parametrized by vectors p �
�p�� p�� � � � � pk� with pj 
 � and

P
j pj � �� It is not di�cult to see �e�g� using

equation �
�� that this hypothesis space is topologically equivalent to a half
sphere� A group structure can be de�ned by the operation�

�p�� p�� � � � � pk� � �q�� q�� � � � � pk� � �Pk
j�� pjqj

�p�q�� p�q�� � � � � pkqk� �	��

with identity�

e � �
�

k
�
�

k
� � � � �

�

k
� �	��

and inverse element

p�� �

�
�X

j

�

pj

�
A
��

�
�

p�
�
�

p�
� � � � �

�

pk
�

and the operations of multiplication and inverse are C��� Thus the discrete
model with the operation �	�� is a Lie group�
This Lie group let us call itGk is isomorphic to the abelian group of positive

diagonal metrices with proportional metrices being identi�ed i�e�

Gk
�� D�

k � �

where D�
k is the group of k by k diagonal metrices with strictly positive entries

and � is the equivalence relation�

A � B i� �c 
 � with AB�� � cI�

What is most remarkable about this is that �	�� is also Bayes theorem
� the
normalized prior p operated with the normalized likelihood q produces the
normalized posterior r given by the right hand side of equation �	���
It is not clear what all this implies but it seems worth it to �nd out�
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