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Abstract
Data is prior information and prior information is more data. Mean-

ingful data is always a two part object. The observable (arbitrary) label
and the (unobservable) label for the probability distribution that gener-
ated the observed label. A meaningful data space is always a DataThe-
ory space containing objects (x, p). We identify the main category of
these spaces by defining the morphisms to be sufficient transformations
(x, p) → (x′, p′), such that from (x′, p′) we can recover (x̃, p) where x̃
and x come from the same unboservable p. The only known measures of
separation between (unormalized) distribtuions that are invariant under
sufficient transformations were identified by Chentsov and Amari [Va] as
the one parameter class of δ-information deviations. The δ-deviations al-
low us to assign a scalar A(t, η) to a pair of distributions where t = t(y)
is interpreted as the true distribution of labels and η = η(p) as a prior
over the model. The invariant scalar A(t, η) measures the information in
η about the true distribution t given the model. The critical points (t, η)
of the invariant action produce the most ignorant prior distributions given
the model and a guess at the true distribution. When a sample of data is
observed, the true distribution is replaced by the empirical producing new
ways for processing the observations that include and extend maximum
likelihood and bayesian inference. Finally the general theory is applied to
the simple logistic regression model, producing new targets and penalties
that are shown to outperform the standard methods in simulations using
TensorFlow.

1 Labels and Data
Labels are chosen by us. If they can be changed, what remains after the changes
contains important information about the category of objects that the labels are
labeling. Today, topology, geometry and vector spaces are defined in these cate-
gory theory terms. We get topology if we demand the changes to be continuous
bijections, geometry if we demand isometries and vector spaces if we demand
the relabelings to be linear.

In principle any symbol could be used as a label. The symbol by itself is
meaningless. The meaning is in the many. The meaning is in the relation of
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the symbols among themselves. This symbol as opposed to all other possible
symbols labeling objects around it. That is what fixes the meaning.

There is no shortage of labeling systems. Numerical labels are often useful,
not only because there are infinitely many to choose from but also for their
internal structures. However, one system of labels is singled out when thinking
about data. The system of labels consisting of probability distributions over a
given data space. Probability distributions provide a mechanism for encoding
the relations among the observed data labels.

An element (labeled as) x of a "data" space, by itself is not data. It is
meaningless. The meaning is provided by assuming that this label x was the
result of an hypothetical probabilistic sampling from the data space.

The basic data-object of interest has two sides: an observable label x on
one side, and an unobservable label p on the reverse side: px ≡ (x, p). A
choice of range for these (x, p) data-objects provide concrete and objective prior
information.

Let (x, p) ∈ S and call S the statistical DataTheory space. The space S is a
subset of X ×P the set X of all possible data labels x cartesian product P, the
set of all possible p, probability distributions over X .

There is often more assumed structure. The space S could be taken as a
submanifold of X × P. For example, think of X as a manifold (e.g. a sphere)
and P as embedded in the Hilbert space of wave functions.

The S-Category of DataTheory spaces, can be simply defined by taking
the morphisms to be standard coordinate changes (for both x and p separate)
enlarged by more general sufficient transformations (x, p)→ (x′, p′). Where by
"sufficient" we mean that from (x′, p′) we can recover (x̃, p) in the sense that x̃
and x both come with the same hidden side p. This is just the canonical Fisher
notion of statistical sufficiency.

Now think of the elements of S as another set of labels. A probability
distribution over S will fix a meaning for these new labels. Notice,

P (x, p) = P (x|p)P (p)

A likelihood P (x|p) (e.g. p(x)) and a prior P (p). Recall that "," really means
the logical "AND", which is commutative. Thus,

P (x, p) = P (p, x) = P (p|x)P (x)

A posterior P (p|x) and the evidence P (x). Bayes theorem follows,

P (p|x) = 1
P (x)P (x|p)P (p)

When p ranges over a Riemannian manifold with finite volume, there is
a notion of equally likely p given by the uniform distribution over this finite
volume. There is nothing subjective about this, once you choose S.
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1.1 Fisher Information
Spaces of probability distributions are clearly not closed under addition and
multiplication by scalar. They are not vector spaces. Nevertheless, there are
canonical embeddings of probability distributions on Banach spaces that respect
the S-Category. For 0 < δ < 1 the Banach space L1/δ of δ powers of measures
contains the δ coordinates lδ(p) of a probability distribution p with, lδ(p) =
pδ/δ. The Banach space associated to 1− δ is the topological dual of the space
associated to δ. The only Hilbert space is the self-dual L2 associated to δ = 0.5.
Fisher information is just the metric induced on the model as it is embedded
into L2. In other words: label the probabilities p in your model with the vector
2√p in the Hilbert space L2 of square integrable functions. The Information
metric at p is the matrix g(p) = (gij(p)) with components,

gij(p) =
∫
∂i(2
√
p)∂j(2

√
p) dx =

∫
(∂i log p)(∂j log p) p dx

where ∂i is the partial derivative w.r.t. the ith coordinate vector, and the
integrals are over the space of x. Parametric statistical models with smooth
parametrizations are Riemannian manifolds with the information metric g(p).

1.2 δ-separation, Entropy, and Duality
Let l0(p) = log(p). For 0 ≤ δ ≤ 1 define the δ-separation between (possibly
unnormalized) distinct distributions p and q by the positive number Iδ(p : q) =
I1−δ(q : p) given for 0 < δ < 1 by:

Iδ(p : q) = 1
δ(1− δ)

∫
[δp+ (1− δ)q − pδq1−δ] dx

and by the corresponding limit when δ ∈ {0, 1}. Thus,

I0(p : q) =
∫ (

q − p+ p log p
q

)
dx = I1(q : p).

The entries gij(p) of the information matrix at p are also given by the duality
product between the coordinates lδ(p) ∈ L1/δ and the dual coordinates l1−δ(p) ∈
L1/(1−δ) as,

gij(p) =
∫

(∂ilδ(p))(∂j l1−δ(p)) dx

The Iδ(p : q) numbers are invariants of the S-category i.e., they are invariant
under sufficient transformations. No other measures of separation between prob-
ability distributions, besides these or functions of these, are known to respect
the S-category.
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1.3 Categorically Sound Objectives
Having observed data arbitrarily labeled y1, y2, . . . , yn in a background of prior
information how should we proceed extracting meaning to best predict unob-
served yn+1 ? What should we optimize? What should the target be?

In our current deep learning frenzy, Ed Jaynes’s words resonate with renewed
power:

Maximize Ignorance subject to whatever is assumed to be known!

This is just Maximum Honesty. An ethical principle.

The Actions of Ignorance

The risk functionals A = A(t, η) (see below) defined for a DataTheory space in
the S-category, rank the pairs (t, η) according to their information, i.e., separa-
tion from ignorance. Here t = t(y) is a (not necessarily normalized) distribution
on the space of data labels y and η = η(p) is a (not necessarily normalized)
distribution on the hypothesis space M of possible theories p. We interpret t as
the (unknown) true distribution for the data and η as the (unknown) prior dis-
tribution onM . Let π = π(p) be a given fix prior distribution on the hypothesis
spaceM of possible theories p. This π will be taken as a diffuse pre-prior onM .
When the information volume vol(M) is finite, we take π(p) = 1 as the uniform
distribution on M . We always write distributions on the Riemannian manifold
M as scalar density fields relative to the invariant Riemannian volume form dp
on M .

Denote by tπ = P (y, p) = t(y)π(p), i.e. y and p are chosen independently.
First pick p ∈ M according to the distribution π, then independently choose
label y in the data space according to the (true) distribution t. Consider now
any other distribution on (y, p). P (y, p) = p(y)η(p) = pη. Then, Iδ(pη : tπ)
measures the δ-separation between the joint distributions pη and tπ and I1−ν(η :
π) measures the separation between the priors η and π. For β > 0 define the
positive scalar,

A(t, η) = β Iδ(pη : tπ) + I1−ν(η : π) (1)

The (unnormalized) pair (t, η) that minimizes the action A is,

η(p) = [1 + βνIδ(p : t)]−1/ν π(p) (2)

tδ(y) =
∫
pδ(y) η(p) dp (3)

The action (1) does not contain derivatives and its optimization is a simple
problem in the calculus of variations. Just take derivatives equal to zero as if the
functions were real variables. The expressions (2) and (3) pack a considerable
amount of information in a short space. Think of (2) as defining a kernel k(p, t)
on the dual Banach spaces associated to δ and 1−δ. It is a measure of separation
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between the probability distributions p and t on the data labels. The kernel
(2) is literally the prior distribution of maximum ignorance. The expression
(3) provides the δ coordinates of t as the average of the δ coordinates of p or
equivalently as the mean kernel. This is remarkably similar to the Reproducing
Kernel Hilbert Space (RKHS) embeddings of probability distributions but in
Banach spaces instead. The big difference with the RKHS approach is that
here the kernel is fixed by the theory as the most ignorant prior given the choice
of S. Besides, all the expressions are invariant under sufficient transformations
preserving the S-Category. Notice that t(y) is given by (3) as the length of
a function measured in the Reproducing Kernel Banach Space associated to δ
(δ-RKBS) with kernel (2).

Let us try to unpack the information provided by the optimizer (2). This
distribution over M achieves a compromise between spreading the probability
mass over M so that I1−ν(η : π) is small and concentrating the mass around
the δ-projection of t on M so that Iδ(pη : tπ) is also small. This distribution is
indeed most ignorant given only the choice of S.

A simple geometric interpretation of (2) is obtained by noticing that, Iδ(pη :
tπ) =

∫
Iδ(p : t) η so that the minimizer (2) is the one minimizing I1−ν(η : π)

subject to the constrain that
∫
Iδ(p : t) η < C, i.e., subject to the constrain

that the expected distance from t (expectation taken w.r.t. the η distribution)
is bounded above by some constant C. The positive scalar β is the Lagrange
multiplier associated to the inequality constraint. Equivalently we can think of
η as the minimizer of Iδ(pη : tπ) subject to the constrain that I1−ν(η : π) < C.
i.e., this η is the prior distribution that is most ignorant about the data (making
pη as close as possible to the independent model tπ in δ-separation) among those
close to the spread pre-prior π on M . Notice that when the volume of M is
finite we can (and should) take π(p) = 1 since in the absence of extra prior
information besides the choice of S, we should regard all the p ∈ M as equally
likely apriori. The actual location of the (unknown) true distribution t is the
only bias and that is in fact what is encoded in the action A.

Figure 1 shows the "true" distribtuion t outside the model M together
with the δ-separation between t and a probability distribution p ∈ M . The
δ-projection of t onto M is represented by the point q ∈ M closest to t in
δ-separation.

Notice that when the information volume of M is finite so that π(p) = 1, we
have,

t = arg max
p

η(p)

= arg max
p

[1 + βνIδ(p : t)]−1/ν

= arg min
p

Iδ(p : t)

i.e., the assumed true distribution t maximizes the prior probability. If we
constrain p ∈ M the δ-projection (depicted as q in figure 1) of t on M is the
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Figure 1: Pictorial representation of the Actions of Ignorance
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one with highest prior probability.

Maximum Likelihood, Bayesian Inference and Maximum Honesty

The new way to statistical inference provided by Maximum Honesty is very
simple. If data labels y1, y2, . . . , yn are observed, just plugin the empirical dis-
tribution t̂n instead of t in (2) and predict with (3).

Notice that the Maximum Likelihood Estimator (MLE) p̂ ∈M is the δ = 1
projection of the empirical onto M .

p̂ = arg min
p∈M

I1(p : t̂n)

= arg min
p∈M

∫ [
p− t̂n + t̂n log t̂n

p

]
dy

= arg max
p∈M

[
n∑
i=1

log p(yi)−
∫
p(y) dy

]

where we have used the (unnormalized) empirical, t̂n(y) =
∑n
i=1 δ(y − yi) and

the fact that I1(p : t̂n) = I0(t̂n : p).
Let’s work out a simple example to help fix the ideas. Take M as the set

of unnormalized one dimensional Gaussian distributions. The members of M
given by their Lebesgue densities are,

p(y) = c exp
(
−1
2σ2 (y − µ)2

)
we have, ∫

p(y) dy = cσ

∫
exp(−z2/2) dz = ckσ.

We need to maximize,

L(c, µ, σ) = −1
2σ2

n∑
i=1

(yi − µ)2 + n log c− ckσ.

the sufficient conditions are,

∂L

∂c
= n

c
− kσ = 0 ⇒ c = n

kσ
(4)

∂L

∂µ
= 1

σ2

n∑
i=1

(yi − µ) = 0 ⇒ µ̂ = 1
n

n∑
i=1

yi (5)

∂L

∂σ
= 1

σ3

n∑
i=1

(yi − µ)2 − ck = 0 ⇒ σ̂2 = 1
n

n∑
i=1

(yi − ȳ)2 (6)
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where we used (4) and (5) to obtain (6). Notice that we never needed the
fact that k =

√
2π. In more complicated problems the trade of a derivative

with respect to an extra parameter c for the computation of the exact normal-
izing constant could be very useful. Hence, the standard MLE is obtained by
projecting the unnormalized empirical onto the space of unnormalized model
distributions M using δ = 1 i.e., I1 as the information separation.

δ-MLE

Now repeat the above but with a general δ to obtain p̂1−δ, the (1− δ)-MLE.

p̂1−δ = arg max
p∈M

[
n∑
i=1

pδ(yi)− δ
∫
p(y) dy

]
(7)

When M is the space of unnormalized one dimensional Gaussian distributions
(as above), the (1− δ)-MLE is obtained as the solution of two nonlinear equa-
tions,

µ =
∑n
i=1 wiyi∑n
i=1 wi

(8)

σ2 =
∑n
i=1 wi(yi − µ)2∑n

i=1 wi
(9)

where the weights wi also depend on the unknowns,

wi = exp
{
−δ
2σ2 (yi − µ)2

}
(10)

Iterative substitution starting from the usual MLE quickly converge to the fix
point. The estimators for the mean provide robust alternatives to the standard
sample average but the estimators for the variance become more and more biased
as δ increases. Recall that even the standard MLE (6) is biased. Notice also
that the standard MLEs are recovered in the limit δ → 0 since in that case
wi → 1.

1.3.1 Direct Posteriors

When the unknown true distribution t is replaced by the unnormalized empirical
t̂n in (2) we get,

η̂(p) = [1 + βνIδ(p : t̂n)]−1/ν π(p) (11)

t̂δ(y) =
∫
pδ(y) η̂(p) dp (12)

we call η̂(p) the (unnormalized) direct posterior with parameters β, ν and δ.
We call (12) the δ-coordinates of the δ-predictive distribution. The special case
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when δ = 1, ν = 0 and β = 1 is singled out as particularly important. By taking
the limit when ν → 0 in (11) with δ = 1 and β = 1, we get,

η̂(p) = exp
(
−n I0(t̂n : p)

)
π(p) (13)

where we have used the fact that I1(p : t̂n) = I0(t̂n : p). We noticed that, had
we used the normalized empirical instead of the unnormalized version, we would
have needed to take β = n in order to get the same result. We have,

I0(t̂n : p) =
∫

p(y) dy −
n∑
i=1

log p(yi) + C (14)

If
∫
pdy = 1, i.e. for normalized probability distributions (13), gives the unnor-

malized direct posterior:

η̂(p) = p(y1)p(y2) . . . p(yn)π(p) (15)

that we recognize as the unnormalized posterior distribution when the likelihood
is
∏n
i=1 p(yi) and the prior is π(p). Moreover, with (15) and δ = 1 replaced in

(12) we get,

t̂(y) =
∫

p(y) (
n∏
i=1

p(yi))π(p) dp (16)

that we recognize as the standard bayesian unnormalized predictive distribution.
In other words with this special choice of parameters the inference is as if we
had used Bayes Theorem but we did not! Bayesian Inference was produced
automagically as a special case of maximum ignorance. Maximum honesty is
more general than Bayesian Inference.

To get simpler formulas we are going to assume normalized distributions for
the rest of this section. Now,

t̂n(y) =
n∑
i=1

1
n
δ(y − yi)

so that for normalized p we have,

Iδ(p : t̂n) = 1
δ(1− δ)

[
1−

n∑
i=1

( 1
n

)1−δpδ(yi)
]

producing the direct posterior:

η̂(p) =
[

1 + βν

δ(1− δ)

(
1−

n∑
i=1

( 1
n

)1−δpδ(yi)
)]−1/ν

π(p) (17)

The p ∈M that maximizes the direct posterior probability provides a natural
target:
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p∗ = arg max
p∈M

{
η̂(p)π(p)

√
det g(p)

}
= arg min

p∈M

{
1
ν

log
[

1 + βν

δ(1− δ)

(
1−

n∑
i=1

( 1
n

)1−δpδ(yi)
)]

− log π(p)− 1
2 log det g(p)

}
(18)

If instead of searching for the minimum over all p ∈ M we constrain to p
close to a given p0 we can heuristically justify a useful penalized optimization
analogous to ridge regression. This can be done by assuming that the L2 coordi-
nate vectors are close so that 4||p1/2−p1/2

0 ||22 ≤ C for a small C > 0. But, recall
that the information metric is the metric induced on M as embedded in L2.
Thus, in a given parameterization of M , for example M = {Pw : w ∈ Rk} the
constraint can be implemented as (w − w0)T g(w)(w − w0) ≤ C. This could be
further interpreted as choosing π(p) = π(w) = exp(−λ||w−w0||2w) as a gaussian
prior on M . If we denote by L(w) the loss function between the curly brackets
in (18) the penalized target will be,

L(w) + λ(w − w0)T g(w)(w − w0) (19)

where λ > 0 is the Lagrange multiplier associated to the constraint. When
the dimension of the manifold M , (i.e. k) is large, we expect the shrinking
towards (any) w0 to behave like Herbert Robbins’s empirical Bayes estimators
that borrow strength from the different dimensions (when k ≥ 3) and also help
control overfitting.

1.3.2 Deep Teaching for Deep Learners

There is much more that needs to be unpacked from (2) and (3). Without data,
from a choice of DataTheory space S and parameters t, η, π, β, δ, ν we get a new
DataTheory space with new parameters at a higher level of abstraction just by
extremizing honesty. We can repeat the process at the higher level and obtain
what I call the abstraction sequence. Recall that a probability distribution
on data labels y is nothing but a code for the data. An explanation for that
data. A theory. A probability distribution on the set of those theories (i.e., a
prior) therefore gives an explanation for the explanations, etc. Now bring in the
observed labels y1, y2, . . . , yn at the ground layer 0. Take,
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t0(y) =
n∑
i=1

δ(y − yi), M0 = M, S0 = X ×M0, η0(p) = π(p)

=⇒

ηi+1(p) = η(p|ti), tδi+1 =
∫
M0

pδ(y) ηi+1(p) dp, Mi+1 = {ti+1’s}

Si+1 = X ×Mi+1

=⇒ . . . =⇒ (S∗, t∗(y), η∗(p))

where we move from the ground layer-0 to layer-1,. . . , layer-i, to layer-i+1, etc,
by maximizing honesty with η(p|ti) given by (2) replacing t with ti. The idea
is to model the outputs of the layers of a deep learning model as an abstraction
sequence of this type. Exactly how to do this, at this time, is not clear but the
theory of ignorance shows a way forward that needs to be tested.

Can this be useful?

That will depend on how accurately we can approximate g(p) and its determi-
nant. Even though this could be challenging, it is easier than the computation
of the inverse g−1(p) which is required for computing Amari’s natural gradi-
ent. Besides, all the current attempts to implement the natural gradient can be
immediately used in (18) and (19).

Some of the current difficulties of deep learning are no doubt due to the
lack of categorical invariance of the procedures. When the correct information
geometry of the hypothesis space is taken into account, we should expect faster
convergence with much less data.

In the following sections, standard logistic regression is used to illustrate the
general theory. This corresponds to only one layer of a deep learning network. A
sequence of non interacting layers produce block diagonal information matrices
which can, in principle, be studied separately one layer at a time. The new
penalty terms involving the metric g(p) may help in more general layers than
plain logistic regression just like l1 and l2 do. For recurrent, convolutional and
other types of layers that share parameters more work seems to be needed but
promises big rewards. Geometry is our best known antidote to the curse of
dimensionality.

2 Logistic Regression
Logistic regression is a special kind of regression where we want to explain labels
y with other labels x, called features, using a parametric model labeled with a
vector of parameters w, called weights. Supervised learning models are of this
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type. Often we are not interested in modeling the features x, only the y in terms
of the x’s.

The DataTheory space is given by the assumption that, conditionally on w

(x1, y1), (x2, y2), . . . , (xn, yn)

are independent with the probabilities P (yi|xi, w) specified as a function of the
vector of weights w.

The special case of logistic regression is obtained when the yi ∈ {0, 1} and
instead of labeling the chances for yi with a number in the constrained interval
[0, 1] we monotonically relabel them in the unconstrained real line R, by using
the logarithm of the odds of yi instead. Finally, demand the log odds of yi to
be a linear function of the features xi.

Let’s spell out completely the DataTheory space for logistic regression for n
observations with k parameters:

Assume xi ∈ R1×k row k-vector of covariates, yi ∈ {0, 1}, where the dis-
tribution of yi conditionally on xi and w, is Binary (Bernoulli) Bin(θi), with
θi = θi(xi, w) = P (yi = 1|xi, w) = 1− P (yi = 0|xi, w) such that,

log θi
1− θi

= xiw (20)

where w ∈ Rk×1 is the column k-vector of parameters.
Let x ∈ Rn×k be the n by k design matrix of observed covariates. The above

assumptions, define (conditionally on the covariates x) the DataTheory space
S = {0, 1}n × Pkx where,

Pkx = {Pw,x : w ∈ Rk}

with Pw,x : {0, 1}n → [0, 1] the probability distribution indexed by a k-vector
w ∈ Rk given by, Pw,x(y1, y2, . . . , yn) =

∏n
i=1 P (yi|w, xi) =

∏
i θ
yi

i (1 − θi)1−yi

where,
θi = (1 + exp(−xiw))−1. (21)

2.1 Information Metric of Logistic Regression
The Fisher information matrix is given at p = Pw,x by,

g(w) = Ew
{

(∇ log p(y|x,w))T (∇ log p(y|x,w))
}

where Ew denotes expectation w.r.t. Pw,x and ∇ is the gradient w.r.t. w.
Let’s denote by l = l(w) = log p(y|x,w). Then,

l(w) =
n∑
i=1
{yi log θi + (1− yi) log(1− θi)}

therefore,
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∇l(w) =
∑
i

{
yi
θi
− 1− yi

1− θi

}
∇θi

and,

∇θi = e−xiw

(1 + e−xiw)2xi

= θi(1− θi)xi
= xi

(1 + e−xiw)(1 + exiw)

= xi
2 + exiw + e−xiw

= xi
2(1 + cosh(xiw))

substituting the second line above into the previous expression for ∇l(w), we
obtain ∇l(w) =

∑
i(yi − θi)xi. Hence,

(∇l)T (∇l) =
∑
i,j

(yi − θi)(yj − θj)xTi xj

therefore, taking expectations with the probability distribution Px,w and recall-
ing that the yi are independent for different values of i we get,

g(w) =
∑
i,j

cov(yi, yj)xTi xj

=
∑
i

var(yi)xTi xi

=
∑
i

θi(1− θi)xTi xi

thus, using the last line in the above series of expressions for ∇θi, we finally
obtain two useful expressions for the information metric,

g(w) = 1
2

n∑
i=1

xTi xi
1 + cosh(xiw) (22)

which in matrix form is,

g(w) = 1
2x

Tdiag
(

1
1 + cosh(xw)

)
x (23)

2.2 The Information Volume of Logistic Regression
The hypothesis space M generated by the logistic regression model is a Rie-
mannian manifold of dimension k with metric tensor given by the information
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matrix at each w by the expression (23). The volume form on a Riemannian
manifold with metric g(w) is given in the w = (wj) coordinates by,

dp = dV (w) =
√

det g(w) dw1 ∧ dw2 . . . ∧ dwk

with total (k-dim) volume given by integrating the volume element over M .

vol(M) =
∫
M

dV =
∫
Rk

√
det g(w) dw.

When x is of full rank so that detxTx > 0, we have vol(M) < ∞. When
k = n, i.e. when x is a square k by k matrix, the computation of the determinant
is trivial using expression (23).

det g(w) = 2−k det(xTx)
k∏
j=1

1
1 + cosh(xjw) (24)

thus,

vol(M) = 2−k/2|detx|
∫

dw√∏k
j=1(1 + cosh(xjw))

= 2−k/2
∫

du√∏k
j=1(1 + cosh(uj))

(25)

= 2−k/2

(∫ ∞
−∞

dz√
1 + cosh(z)

)k
(26)

= 2−k/2
(√

2π
)k

= πk (27)

where in (25) we performed the linear change of variables u = xw. (26) is by
Fubini’s theorem. We state this remarkable result as a theorem.

Theorem 1 When x is a square of full rank the information volume of the
logistic regression model is independent of x and has value πk where k is the
dimension of the manifold.

When n > k, the volume does depend on the design matrix of covariates x.
The volume is still finite provided x is of full rank so that detxTx > 0 but I do
not know of an exact formula for the volume.

2.3 An Approximate Lower Bound for log det g(w)
If needed, shuffle the sequence of xi’s so that (23) is written as the sum of r ≥ 1
matrices of full rank k plus a reminder matrix A, i.e.,
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g(w) = 1
2

n∑
i=1

xTi xi
1 + cosh(xiw) = G1 +G2 + . . .+Gr +A

Thus,

log det g(w) = log det r

1
r

r∑
j=1

Gj + 1
r
A


= k log r + log det

1
r

r∑
j=1

Gj + 1
r
A


≈ log det

1
r

r∑
j=1

Gj

+ k log r (28)

≥ 1
r

r∑
j=1

log detGj + k log r (29)

where (28) follows from the fact that log det is continuous and for n >> k will
have r >> 1 so that the Frobenius norm ||A/r||2 is small. (29) follows from
the fact that log det is log concave as a function of symmetric positive definite
matrices. A simple proof of this well known fact is as follows: Suppose A and B
are symmetric positive definite matrices, that 0 ≤ λ ≤ 1 and that z is a column
vector of the dimension of the matrices (say k) then,

exp
(
−zT [(1− λ)A+ λB]z

)
=
[
exp(−zTAz)

]1−λ [exp(−zTBz)
]λ

hence, integrating both sides over Rk and using Holder’s inequality we obtain,

∫
exp

(
−zT [(1− λ)A+ λB]z

)
dz ≤(∫

exp(−zTAz) dz
)1−λ(∫

exp(−zTBz) dz
)λ

computing the Gaussian integrals we obtain,

det ((1− λ)A+ λB) ≥ (detA)1−λ(detB)λ

and the result follows by taking logs. i.e., log det is log concave as claimed.
Using the expression (24) for computing detGj in (29) we finally get,

log det g(w) ≥ −1
r

n∑
i=1

log (1 + cosh(xiw)) + C (30)

where C is independent of w. This bound is not very good. It could and should
be improved upon. However, in some preliminary experiments it does seem to
help.
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2.4 Targets for Logistic Regression
The general new targets from the geometric theory of ignorance are given by
(19). Let us rewrite them for the specific case of logistic regression where we will
take π(p) = 1 and for simplicity w0 = 0. The target expression to be minimized
over w ∈ Rk is,

Lδ,ν(w)− 1
2 log det g(w) + λwT g(w)w (31)

where,

Lδ,ν(w) = 1
ν

log
[

1 + βν

δ(1− δ)

(
1−

n∑
i=1

( 1
n

)1−δP δw,x(yi)
)]

(32)

and,
P δw,x(yi) =

[
θyi

i (1− θi)1−yi
]δ

with θi as in (21). A systematic evaluation of (31) varying all the parameters
needs to be tested on different data sets. This is in principle straight forward but
it has not been done yet. The parameter ν in [0, 1] controls likelihood robustness,
δ in [0, 1] controls prior robustness, β > 0 gives the equivalent number of virtual
observations supporting the choice of prior and λ > 0 controls the radius of the
L2 ball where the search is done.

The case ν = 0 makes the targets additive over the observations and we
should expect the standard stochastic gradient descent to work as usual. The
case ν = δ = 0 gives,

L0,0 = β

n

n∑
i=1

[yi log(θi) + (1− yi) log(1− θi)] (33)

= −β
n

n∑
i=1

I(Bin(yi) : Bin(θi)) + C

which is the default standard for logistic regression, the so called "Binary Cross-
Entropy" target in TensorFlow.

Using (33,32,30,22) we obtain a target in terms of parameters a > 0 and
b > 0 controlling the relative weights of the three terms,

n∑
i=1

logPw,x(yi) + a

n∑
i=1

log(1 + cosh(xiw)) + b

n∑
i=1

(xiw)2

1 + cosh(xiw) (34)

we notice that this target can be easily defined in TensorFlow as a function of
the observed vector y and the predicted vector ypred since,

xw = log
ypred

1− ypred
. (35)
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Figure 2: f0 and f1 with and without penalty

Let us rewrite (34) as,

L(w) =
n∑
i=1

fyi
(xiw)

where f1(z) = z + f0(z). A second order Taylor series expansion about 0 gives,

f0(z) = −(1− a) log 2− 1
2z −

1
8(1− 2a− 4b)z2 + o(z2). (36)

We also have that as |z| → ∞,

f0(z) ∼ −(1− a) z (37)

where in (37) we mean that the ratio of the two sides approaches 1 as |z| → ∞.
From (36) and (37) we see that f0 (and similarly f1 = z + f0) is a quadratic
around zero that quickly approaches a straight line as z moves away from zero.

Figure 2 shows f0 and f1 as solid (blue) curves, where 2a + 4b = 1 and
a = 0.25 so there is no quadratic term in (36). The dashed (red) lines converging
to the x-axis show the plain likelihood (i.e., f0, f1 with a = b = 0) without the
new penalties. Figure 2 also shows the linear asymptotes to the solid curves
(dashed light blue).

Above and beyond the geometric interpretation for the new penalty terms,
Fig 2 provides a possible explanation for why these penalties should work. With-
out the penalties, the plain likelihood approaches the x-axis assymptotically,
making the derivative to approach zero. With the penalties, f0(z) and f1(z)
approach a straight line with constant derivative. The penalties should work
for the same reason that ReLu improves over the sigmoid. The signal from the
vanishing derivatives when z is large gets lost and makes the backpropagation
algorithm get stuck in the wrong place.
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3 TensorFlow Preliminary Tests
We test the performance of some of the new targets for simple logistic regression
using Keras with TensorFlow as the backend. This code is available as a Jupyter
Colaboratory Notebook.
import numpy as np
import pandas as pd
import matplotlib . pyplot as plt
from scipy . stats import wishart

import tensorflow as tf
import tensorflow . keras as K
from tensorflow . keras import backend as B

from numpy import einsum as Ein

import tensorflow . keras . layers as layers
from sklearn . metrics import r2_score

def simul_logist ( w_true = np. array ([-0.5,0.25 ,-0.1]),
mean_N = 3,
size_N = 200 ,
var_xi_df = 50 ,
seed = 123):

np. random .seed(seed)
k = len( w_true )
var_xi_scale = np. identity (k)
N = 1+np. random . poisson (lam=mean_N ,size= size_N )
var_cov = wishart .rvs(df=var_xi_df , scale = var_xi_scale ,size=1)
# np. corrcoef ( var_cov ) # to check the correlations

x_unique = np. random . multivariate_normal (mean=np. zeros (k),
cov=var_cov ,size= size_N )

x = np. repeat (x_unique ,N,axis=0)
theta_true_unique = 1/(1+np.exp(-np.dot(x_unique , w_true )))
theta_true = np. repeat ( theta_true_unique ,N)
y = np. random . binomial (1, theta_true )

return {’x’:x,’y’:y,’N’:N,
’theta_true_unique ’: theta_true_unique ,
’x_unique ’:x_unique ,
’pars ’:(w_true ,

mean_N ,
size_N ,
var_xi_df ,
seed)

}

The above code defines a general purpose data generator for simple logistic
regression. To be able to better visualize the accuracy of the inferences we
simulateN [i] repeated values of each covariate feature vector xi. The valuesN [i]
are generated as one plus a Poisson with expected value mean_N . There are
size_N different xi and they are gererated by sampling a multivariate gaussian
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distribution centered at the origin with a covariance matrix taken as one sample
of a Wishart distribution with unit scale and var_xi_df degrees of freedom. This
allows control of the correlations among the dimensions of the covariate vector.

The following code shows how to implement four different targets suggested
by the geometric theory of ignorance.

# ################################################################
#
# Vol prior and L2( manifold ) penalty

eps = 1e-30
def gabloss (y_true ,y_pred , glambda =0.5,gb=1.0): # Both penalties :

Lik + a* Vol + b*L2
bw = K. losses . binary_crossentropy (y_true , y_pred )
vw = -B.log( y_pred *(1- y_pred ))
wgw = y_pred *(1- y_pred )*B. square (B.log(eps+ y_pred ) - B.log(eps+1-

y_pred ))
a = glambda /2.
b = gb*(1- glambda )/4.
return bw + a*B.mean(vw ,axis=-1) + b*B.mean(wgw ,axis=-1)

def gloss_vol (y_true ,y_pred , glambda =1.): # prior = 0
bw = K. losses . binary_crossentropy (y_true , y_pred )
vw = B.log( y_pred *(1- y_pred ))
return bw - glambda *0.5*B.mean(vw ,axis=-1)

def gloss (y_true ,y_pred , glambda =0.001): # prior = 1 (L2(M))
bw = K. losses . binary_crossentropy (y_true , y_pred )
wgw = y_pred *(1- y_pred )*B. square (B.log(eps+ y_pred ) - B.log(eps+1-

y_pred ))
return bw + glambda *B.mean(wgw ,axis=-1)

def glogcosh (y_true ,y_pred , glambda =0.1): # prior = 2
bw = K. losses . binary_crossentropy (y_true , y_pred )
gw = K. losses . logcosh (y_true , y_true +B.log( y_pred /(1- y_pred )))
return bw+ glambda *gw

# ##########################################################

The first function (gabloss) implements (34) by using (35). Notice that when
the parameter gb = 1.0, the weights are such that 2a+ 4b = 1 and thus, there is
no quadratic term in (36). That appears to help when the dimension k is small.
The examples presented here should be taken as preliminary. No attempt has
been made at optimizing hyperparameters yet. However, the simple examples
show that the new terms do improve on the plain likelihood consistently in
low dimensions without much trial and error. Here are fairly typical examples
implemented by using the following model:
# #############################################################

EPOCHS = 30
patience = 5
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early_stop = K. callbacks . EarlyStopping ( monitor =’val_loss ’, patience
= patience )

def logistic_model ( xvals =x_train , learning_rate =0.001 , prior =None ,
glambda =0.5,gb=1.0):

n,k = x_train . shape
model = K. Sequential ()
model .add( layers . Dense (1, input_shape =(k ,) ,

activation =’sigmoid ’,
use_bias = False ))

optimizer = tf. train . RMSPropOptimizer ( learning_rate )
if prior == None:

model . compile ( optimizer =optimizer ,
loss=’binary_crossentropy ’,
metrics =[’accuracy ’])

elif prior == 0:
model . compile ( optimizer =optimizer ,

loss=gloss_vol ,
metrics =[’accuracy ’])

elif prior == 1:
model . compile ( optimizer =optimizer ,

loss=gloss ,
metrics =[’accuracy ’])

elif prior == 2: # glogcosh
model . compile ( optimizer =optimizer ,

loss=glogcosh ,
metrics =[’accuracy ’])

elif prior == 3: # gabloss : Lik +a* vol +b*L2
model . compile ( optimizer =optimizer ,

loss=gabloss ,
metrics =[’accuracy ’])

model . build (( None , xvals . shape [1]))
print ( model . summary ())
return model

# ################################################################

Dim k = 3

Twenty different θi’s with an average of 10 observations per θi where simulated
with the following code:
# ###########################################################
#
# Get data :
#

sim_train = simul_logist ( w_true =[-0.5,0.25 ,-0.1],
var_xi_df = 3,
mean_N =10 ,
size_N =20 ,
seed=123)
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(a) Prior: R2 = 0.751 (b) No Prior: R2 = 0.009

Figure 3: Dim k = 3. With and without prior.

x_train ,y_train , N_train = sim_train [’x’],sim_train [’y’],sim_train [’
N’]

pars = sim_train [’pars ’][:-1]
sim_test = simul_logist (*pars ,seed=2)
x_test ,y_test , N_test = sim_test [’x’],sim_test [’y’],sim_test [’N’]
# ###########################################################

With the new target as:
g_prior3 = logistic_model ( prior =3, glambda =0.25 ,gb=0.9)
gh3 ,gobs3 , gpred3 = Fit(g_prior3 ,sim_train , sim_test )
g_prior3 . get_weights ()

we get a coefficient of determination of R2 = 0.751 showing that 75.1% of
the variance of the observed θi’s is explained by the (logistic) regression on the
xi’s. Compare this to an R2 = 0.009 obtained on the same data with the plain
likelihood without the new penalties.

Dim k = 10

With 40 different θi’s with an average of 10 observations per θi, we get R2 =
0.638 with the prior but only R2 = 0.553 without the prior on the same data.
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(a) Prior: R2 = 0.751 (b) No Prior: R2 = 0.009

Figure 4: Dim k = 3. Sorted θi’s.
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(a) Prior: R2 = 0.638 (b) No Prior: R2 = 0.553

Figure 5: Dim k = 10. With and without prior.

One should expect the gains from using the correct geometry of logistic re-
gression to increase with the dimension of the manifold. However, that is not
what these preliminary simulations show. What is observed is that in higher
dimensions, it becomes more difficult to make the plain backpropagation al-
gorithm to converge with and without the prior. We have just scratched the
surface of the available new targets and a systematic evaluation with hyperpa-
rameter tuning will be needed to bring the geometric theory of ignorance to its
full practical fruition.

3.1 Logistic Regression is Flat!
Using (23) and the summation convention, write the components of the metric
as,

gij = xild
llxlj (38)

where the entries of the diagonal matrix are,

dll = 1/2
1 + cosh(xlw) . (39)

Recall that the components Γijk of the Levi-Civita metric connection are,

2Γijk = ∂igjk + ∂jgki − ∂kgij . (40)

Thus,

Γijk = alxlixljxlk (41)
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(a) Prior: R2 = 0.638 (b) No Prior: R2 = 0.553

Figure 6: Dim k = 10. Sorted θi’s.

where,

al = − sinh(xlw
4(1 + cosh(xlw))2 . (42)

When n = k with x non singular, we can easily formally write the entries of
g−1,

gij = xildllx
lj (43)

that are needed to raise the connection indices,

Γijk = girΓrjk (44)

but when n > k there is no simple formula for the gij . Recall that the Ricci cur-
vature scalar R is obtained by contracting the indices of the Riemann curvature
tensor Rijkl, (i.e. taking traces), where,

Rijkl = ∂kΓilj − ∂lΓikj + ΓikmΓmlj − ΓilmΓmkj (45)

Sage to the Rescue:

With the help of ig.sage and the the simplificator Sim.sage we get:
load("http :// omega . albany .edu:8008/sage/sim.sage")
load("http :// omega . albany .edu:8008/sage/ig/ig.sage")

def g_logistic_metric (k,n):
assert n >= k, "n=%d must be at least k = %d " % (n,k)
for j in range (k): var(’w%d’%j)
w = [var(’w%d’%j) for j in range (k) ]
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x = matrix (SR ,n,k)
for i in range (n):

for j in range (k):
x[i,j] = var(’x%d%d’%(i,j))

for i in range (n):
vars ()[’x%d’%i] = x[i,:]

xw = x* matrix (k,1,w)
diag_vec = vector ([1/(1+cosh(xw[i,0])) for i in range (n)])
Dw = diagonal_matrix ( diag_vec )
gmat = x. transpose ()*Dw*x
g = Metric ( coords =w,gmat=gmat)
return g

g = g_logistic_metric (2,2)
g. get_all ()
g. get_Rscalar ()
# uncomment the next line to watch the
# largest equation you have ever encountered ...

# g.R

Sim(g.R)

It simplifies to zero!

Is there a hole?

The logistic regression manifold seems to be flat and of finite volume. If it were
periodic it would be like a k-dimensional Torus. There is a boundary though.
The boundary is obtained when some of the θi ∈ {0, 1}, just like in bitnets.pdf.
If we were able to glue the boundaries in the correct way it would make the
manifold periodic and there will be a hole.

4 References and Name Dropping
Where does this come from?
Here is a biased personal attempt to explain my path here. First and foremost,
I am in debt to Shun-ichi Amari, Edwin Jaynes and Herbert Robbins, the cre-
ators of the three main pillars of the geometric theory of ignorance; Amari for
Information Geometry, Jaynes for Maximum Entropy, and Herbert Robbins for
Empirical Bayes. [Am],[Ro3],[L-S].

A little historical tale: The 1980’s and 1990’s saw a revival of the ideas of
Laplace and Jeffreys in sync with the availability of inexpensive computing and
the use of Monte Carlo methods. The sabbatical year that Jaynes spent at St.
Johns College in Cambridge ignited a new Bayesian evangelism propelled by
Gull, Skilling and later McKay as the main apostles. We are still feeling the
effects of their influence today. In the opposite camp at that time with Berkeley
as the epicenter, the mathematically minded statisticians were unable to swallow
the use of out-of-the-blue prior distributions on arbitrary parameterizations and
kept pushing for variants of maximum likelihood. In the mean time, neural nets
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came in and went out of fashion a couple of times, justifying the belief that the
best thing about neural nets was the label: Neural Nets. All that changed a few
years ago when the one trick pony of automatic differentiation, combined with
better hardware and more data, brought logistic regression to a new level and
started the ongoing deep learning revolution. The geometric theory of ignorance
promises a new way forward - Bayesianism without cheating that can be applied
to deep networks that actually work in practice.

Tong Zhang:

In a 2003 NIPS paper Zhang03.pdf, Tong Zhang showed that the direct δ-
posteriors with δ < 1 are robust against incorrect assignments of prior mass
away from the true distribution t and that this is not always true for standard
bayesian inference, i.e. this is not true when δ = 1. Compare this with Theorem2
in Rodriguez93.pdf.

My papers can be found on my website.
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