Abstract
The Hybrid Monte Carlo Method: Hamiltonian Dynamics, Liouville’s

Theorem, Leapfrog Discretization. The Non-Reversible Directed Metropo-
lis.

Adding Momentum Variables

Recall that to sample from,

f(&) = 5 exp{~(~log /(x))}

we use the Metropolis algorithm with energy function as —log f(z). As it will
be seen later, it is useful to think of the € R™ only as the position variables
q=(q1,---,qn) so that the log-likelihood plays the role of a potential energy. By
introducing an independent extra set of momentum variables p = (p1,...,pn)
with i.i.d. standard Gaussian distributions we can add a kinetic term to the
potential to produce a full Hamiltonian (energy) function on a ficticious phase-
space,

1
H(q,p) = =log f(@) + 5 ) _pi
i
The Cannonical distribution associated to this Hamiltonian is,

7(4,p) = 5 exp{~H(a,p)}
H

and we can sample from it by using a combination of Gibbs and Metropolis and
finally discard the momentum variables to show only the position variables that
by construction are now comming from the correct marginal distribution f(gq).

The extra burden of enlarging the dimensions of the sampling space to then
through them away at the end, looks like a complete waste, but there is of-
course a benefit associated to this procedure. What is gained by adding the
momentum variables is a way to efficiently explore large regions of phase-space
by simmulating the Hamiltonian dynamics in ficticious time. As it is shown
in the next sections, by following the dynamical path in phase-space, we can
propose cadidate moves that are far away from the current state but that still
have a substantial chance of being accepted.

The validity of the Hybrid Monte Carlo Method rests on three standard
properties of Hamiltonian dynamics:

1. Time reversibility, i.e. invariance under t — —t,p — —p.
2. Conservation of Energy, i.e. H(q,p) is the same for all times.
3. Liouville’s theorem, i.e. conservation of phase-space volumes.

We look at each of these properties in the next sections.



Hamiltonian Dynamics in Ficticious Time

Let us introduce a ficticious time 7 along which we assume the system is evolving
according to Hamilton’s equations derived in lecture I

(http://omega.stat.psu.edu:8008/summer99/lectures/.. lecturel /11.html). In com-
ponent form they are,
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where for the rightmost hand-side we have replaced the specific Hamiltonian
defined in the previous section. It is interesting to notice that in this ficticious
dynamics the field of forces is supplied by the score function (i.e. the derivatives
of the loglikelihood).

Time Reversivility

The above system of equations is invariant under the transformations,
T =5 —1=7
p = —p=p
g = g=¢

To see it, first notice that the Hamiltonian is the same, i.e.,

H'(d,p) = —logf(q’)+%2(p§)2

1 2
—log f(q) + 3 Xi:pz’

= H(q,p)

and the equations are also the same,

dr'  op dr 0Op
g oH dp oH

dT’__aq’ — _dT_a_q

This is usually stated by saying that the equations of Classical Mechanics are
blind to the direction of time. The equations can not tell if the movie of the
universe is being run forwards or backwards! I don’t know which universe clas-
sical mechanics is trying to describe... certainly not mine! This is the tip of



the iceberg of the so called problem of time. Quantum theory suffers the same
ache. The appearance of the arrow of time has been related to the second
law of thermodynamics (MaxzEntT™), the expansion of the universe, the Big!,
and even conciousness!. I have humbly (yeh, right..) proposed a connection to
uncertainty

(http://omega.stat.psu.edu:8008/summer9d9/lectures /hitp://xzz.lanl.gov/abs/physics/9808009)
in the measurement of location.

Conservation of Energy

With the help of Hamilton’s equations we can compute the rate of change with
respect to time (i.e. the time derivative) of any quantity F'(q,p) defined as a
function on phase-space. By the chain rule,

d OF . OF
~F = G4+
7 (a,p) 6qq+ op?

were we have suppressed the summation over the coordinates by denoting the
innerproduct of vectors with a plain product. Replacing Hamilton’s equations
we get,

d OF0H O0OFO0H
F(ap) =5 o — 5 = {H,F)

the last formula is known as the Poisson bracket (it is a Lie product). The
derivative wrt time of any function F' is then obtained by computing the Poisson
bracket of F' with the Hamiltonian for the system H. The Hamiltonian tells how
things change with time. When F' = H we get,

d

—H =0

72 (@)

and therefore things may change but energy doesn’t. H i.e. total energy is a
constant of time.

Liouville’s Theorem

Take a piece of phase-space of some volume v. Now think of each of the points
inside this volume as different systems with the same Hamiltonian but with
different initial conditions. Let time go and the systems evolve according to
Hamilton’s equations. After some time the points initially inside the volume v
would be spread all over. However, the equations of movement assure that the
volume of phase-space covered by these points, is the same at all times. That
is Liouville’s theorem and that is what we now prove.

Take an arbitrary time 79 and an arbitrary region of phase-space, Dg. With-
out loss of generality assume this time to be zero. Let D(r) be the region
of phase-space at time 7 occupied by the points that at time zero were in
D(0) = Dy. As in the picture.



t>0
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Figure 1: Illustration of Liouville’s Theorem

The volume of D(7) is,
v(r) = / dq'dp' = / det(I + 7M)dgdp + O(r)
D(7) D(0)
where we have used the change of variables,

!/

q q+T7¢+o(r)
/

p = p+T1p+o(r)

with the little o’s holding as 7 — 0. The matrix M is the part of the Jacobian
with the derivatives of ¢ and p. We have,

det(I +7M) =1+ 7tr M + o(1)

where tr is the trace and we have,
j ) H H
tT’M:@-F@:Q 6_ _ﬁ 6_ =0
g Op Oq\ Op Op \ 0q
where we have replaced Hamilton’s equations and assumed continuity for the

second order partial derivatives of H in order to have the equality of the mixed
partials. Thus, we can write,

o(r) = / (1 + 0)dgdp + o(r) = v(0) + o(7)
D(0)

from where we obtain,

d
E’U(T) =0

0

and since 79 = 0 was arbitrary we have shown that the derivative is zero for all
times. Hence, the volume is a constant of time.



Leapfrog Discretization

To simmulate the Hamiltonian dynamics we need to discretize the equations
of motion and in general, unless we are carefull, the error introduced by the
discretization destroys time reversibility and the preservation of volumes which
are both needed for metropolis to work without changes. The so called leapfrog
discretization has the desired properties. Leapfrog updates the coordinates g;, p;
in three steps. First it takes a little half step for the momentum,

€dlog f
2 Og;

Pi(T +€/2) = pi(7) + (4(r))

then it takes a full step for the position,

Gi(T+€) = G (1) + epi(T + €/2)
and finally the other half step for the momentum,

pir + &) = pilr + ¢/2) + £108S

5 o (a(r + )

leap-Leapity-leap that’s why it’s called leapfrog. At the end of the three steps we
obtain an approximation to the values of position and momentum at time 7+ €
from their corresponding values at time 7. As it can be readily check by simple
inspection, the leapfrog discretization has the following necessary property:

1. it allmost preserves H, in fact to order O(e?).
2. it preserves volumes since the above are just shear transformations.

3. it is time reversible.

The Hybrid Monte Carlo Method

The Hybrid Monte Carlo Method is plain vanilla metropolis in phase-space with
the following proposal distribution:

1. Choose random direction of time, i.e., with probability 1/2 simulate the
dynamics forward or backward in time.

2. Given a current state (g, p) = (¢(0), p(0)) of energy H. Perform a random
number L of leapfrog steps with (possibly random) small stepsize € in the
random direction choosen above. This produces a candidate state (¢, p’)
with energy H'.

the candidate state is then accepted with the usual metropolis probability of
acceptance,

min{1,exp[—(H' — H)]}



The probability of acceptance can be made arbitrarily close to one by decreasing
the stepsize of the discretization. Recall, that the value of the energy reamins
constant along the trajectory of the system in phase-space. The discretization
beeing an inexact simulation of the dynamics of the system, introduces a small
error so that H' — H is not equal to zero but not large.

Hybrid Monte Carlo Works

The validity of the algorithm follows from the symmetry of the proposal dis-
tribution introduced above. To see that the proposal distribution is in fact
symmetric consider the probability of proposing a small region D' given that
the current point is known to be in a small region D of volume dv in phase-
space. Since, the simulated Hamiltonian dynamics with leapfrog discretization
is invariant under time reversals and it preserves volumes it follows that D' has
volume dv as well and the chance of proposing a state in D starting from D’ is
the same as the chance of proposing D' from D.

The benefit of following the trajectory of the system in phase-space is the
fact that we can explore quickly regions that are far away from the current
state eliminating the random walk aspect of the chain improving mixing and
producing more accurate estimates.



