Abstract

Bringing Metropolis to Statistics, Hastings generalization, Component-
wise Metropolis, Gibbs Sampler.
Connection with Statistics

To sample from an arbitrary random vector X € RP with pdf f just turn f into a
canonical distribution by choosing T' and Z(T') and defining an energy function

by,
E(z) = -Tlog f(z)—Tlog Z(T)

so that,
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Usually we only know f(z) up to a proportionality constant independent of z,
ie.

f(x):%h(:c) with ¢ = / h(z)dz

h(z) is assumed to be known and computable but ¢ may be unknown. In this
case we take T'=1 and,

E(z) = —log h(z)

as the energy function. This is ok for sampling from f. To compute the mode
of f, we can run the simulated annealing algorithm with the above energy but
with a general value for T.

Plain Metropolis with Symmetric Proposal Distribution

The plain vanilla Metropolis algorithm generates a stochastic sequence of states,
from an arbitrary starting vector xg, and the following rule to go from a current
state z to a new state y:

1. Propose a candidate state y from a proposal distribution, ¢(y|z) that may
depend on the current . This proposal distribution is assumed to be
symmetric in z and y, i.e., for plain vanilla Metropolis,

a(ylz) = q(zly)

this can be easily implemented, e.g., take



Yy=T+e

with € a random vector radially symmetric about 0. Typical choices for
the distribution of € are multivariate Cauchy, Gaussian, or T distribution
with a few degrees of freedom.

2. If the new proposed state y uses less energy than the current state z
then go there with probability one. If the new state is more expensive,
in terms of energy, than the one we are currently on, then test your luck
and go there with a probability exponentially decreasing in the difference
of energy. More formally the acceptance probability is,
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The Plain Vanilla Metropolis

{

Xo ¢+ z¢ (arbitrary)
for t=0,1,2,...

{

y « sample from g¢(-|z¢)

u < unif(0,1)

if uw <min{l, f(y)/f(z:)} then Xip1 <y
else X1 ¢ 2

}
}

Example: Javascript implementation of plain vanilla Metropolis for sam-
pling from N(0,1) with

q(y|z) = unif(x — 1,z + 1)

Solution by Haihong Li
(http://omega.stat.psu.edu:8008/summer99/lectured/haihong-1.html)



Metropolis-Hastings

A simple modification to the acceptance probabilities used in the plain vanilla
algorithm, allows to use non-symmetrical proposal distributions and still have
detailed balance. Change the previous formula for « to,
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oz.y) = {l’q(ylw)f(w)}

All we need to do is to check detailed balance, i.e.,

py|2)f(x) = p(zly) f(y) for all 2,y

But this is straight forward to check. When z = y it is obviously true, and for
x # y the only way to arrive to y is by accepting it as a proposed candidate.
Thus, the above equation just says that,

a(z,y)q(ylz) f(2) = aly, 2)e(zly) f(y)

which is the same as,

[ 1)) o ) f@)
win {1, G707 | a0 o) = min {1, ST o)

which is true, since when the min. on one side is 1, the min. on the other
side isn’t and the denominator cancels with the term outside the parenthesis
producing the equality of both sides.

As always, detailed balance is enough to assure that f is the stationary
distribution for the chain. But detailed balance is not necessary. It is possible for
a chain to have f as its stationary distribution without p(y|z)f(z) = p(z|y) f(y)
for all z,y. All that it is needed for stationarity is, (its definition)

f(@) = / p(zly) f (v)dy

i.e., that f be the fix point for the linear operator 7', defined by the transition
kernel as,

T ) = / p(-|y) f () dy

Knowing that f is a stationary distribution for a Markov Chain with transi-
tion kernel p(z|y) is not enough to warrant that the chain will eventually sample
states according to the density f. It only says that if at some time ¢ the density
of X; is f then it will remain f for all subsequent times since the law of X; 4
is Tf = f. From the classical fix point theorem of functional analysis we know
that if the f’s belong to a complete metric space, with distance function d, and
the operator T is contractive, i.e.



d(Tf,Tg) < AMd(f,g) with A < 1

then the iterates fo,T(fo), T(T(fo)), - . . converge geometrically in the metric
of the space to the unique fix point for T', provided that the initial fy is not too
far from the fix point. Notice that,

if Xy comes from fy then X,comes from T f,

Thus, the Markov Chain is expected to have the fix point as its long-run
distribution. As we will see later the conditions of the classic fix point theo-
rem are too restrictive. Under mild regularity conditions on the kernel (e.g.
when T is only contractive on the average) a large class of Markov Chains will
be geometrically ergodic. More on this theme when we look at convergence
theorems...

Component-Wise Metropolis

When the dimensionality of the random vector X is large, it is often compu-
tationally more efficient to separate the coordinates of X into groups and use
proposal distributions that update only one group of coordinates at a time. To-
wards this end, we introduce the following notation. Let I = {1,2,...,p} be
the set of indices for the coordinates of x. We write,

r={z', 2%, .. 2P} =2’

If J C I we write =7 the set of all coordinates except those in the set J, i.e.
2=/ = 2"\ Let I, I5,...,I,, form a partition of I so that z gets separated
into m groups,

z={z", ...z}

Start the Metropolis-Hastings algorithm from somewhere and suppose that
at time ¢ we are visiting state x, then at time ¢ 4+ 1 we either remain at x or we
go to y by modifying only one of the m components of z, i.e.,

ziy1 =y = {1 y'*} for some k

The value of k can be chosen at random among {1,2,...,m} or one after
another cyclically, in which case to have a homogeneous Markov chain we need
to define one iteration only after a full sweep over the set of m components
is completed. Choosing the components at random eliminates this problem
but may end up, by chance, neglecting some of the components for a long
time. An intermediate solution is to randomize the order and then update the



components in that order. In all these cases the acceptance probability is the
usual Metropolis-Hastings formula but when z differs from y in the k component
we have,

win 1 4@ _ [ w@ 2T fy™ )
{1’ q(y|z) f () } B {1’ ar (yIe |z, x=1e) f(aDe |z —1r) }

where g is the proposal function g for updating component k£ and ratio
f(y)/f(z) is written as the ratio of full conditionals, where,
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By writing the acceptance probability in this way we can see that the Markov
Chain associated to the sequence of updates of component k, with all the other
components fix at z77*, has the full conditional (defined above) as stationary
distribution. Eventually all the components end up sampling from the correct
conditionals.

Gibbs Sampler

When the proposal distribution for the k component of z is taken as the full
conditional itself we get the Gibbs sampler, i.e. when

ar(y™ |z, a7 1) = fy"la™)

In this case the acceptance probability becomes 1 and the Gibbs sampler
always accepts the proposal candidates. Gibbs sampling is just a special case of
Metropolis. This is the justification to the popular statement: to sample from
a joint distribution just sample repeatedly from its one dimensional conditionals
given whatever you’ve seen at the time.

The Plain Vanilla Gibbs
{

Xo <+ x¢ (arbitrary)
for t=0,1,2,...

{

k « unif. om {1,2,...,p}

y* « sample from f(.z'k|£L't_{k})

Xppy  {y*, 2, %1y



Example: Javascript implementation of Gibbs sampler for generating sam-
ples from (X,Y") with one dimensional conditionals given by:

gi(zly) = (1—y)tfor0<y<z<l

3y
ple) = —Flord<y<s<l



