Another service from Omega

Solutions to the Exercises...


*****


Exercises in Preparation for Exam1

1.- Line of intersection between the planes P1 and P2,


> P1 := y-x-z=1; P2:= x+y-z=-1;


                              P1 := y - x - z = 1

                              P2 := x + y - z = -1


> Line := solve({P1,P2},{x,y,z});

                         Line := {y = z, x = -1, z = z}



This is the line y = z on the plane x = -1.
2.- Angle between the P1 and P2


> theta := convert(angle([-1,1,-1],[1,1,-1]),degrees);


                                     arccos(1/3) degrees
                        theta := 180 -------------------
                                              Pi


> evalf(",3);

                                  70.6 degrees




3.- Find the angle that 2i+j makes with
(-1,1,1), (1,0,1), (-2,2,1).


> Ang := proc(v1,v2) evalf(convert(angle(v1,v2),degrees),3); end;


Ang := proc(v1,v2) evalf(convert(angle(v1,v2),degrees),3) end


> t1 := Ang([2,1,0],[-1,1,1]); t2 :=Ang([2,1,0],[1,0,1]); t2 :=Ang([2,1,0],[-2,2,1]);

                               t1 := 105. degrees

                               t2 := 50.8 degrees

                               t2 := 107. degrees




4.- Do the vectors:
i+2k-j, i+j-k, 3i+j
lie on the same plane?


> volume := innerprod([1,-1,2],crossprod([1,1,-1],[3,1,0]));


                                  volume := 0



So yes, they do!
5.- Compute the area of the triangle PQR where,
P(0,1,0), Q(2,1,0), R(1,0,1).


> p := vector([0,1,0]); q := vector([2,1,0]); r := vector([1,0,1]);


                                p := [ 0, 1, 0 ]

                                q := [ 2, 1, 0 ]

                                r := [ 1, 0, 1 ]



Notice that the area of the triangle is half the area of the twisted rectangle generated by the arrows from p to q and from q to r. Thus,


> A := crossprod(q-p,r-q)/2; Area := sqrt(innerprod(A,A));


                             A := 1/2 [ 0, -2, -2 ]

                                           1/2
                                  Area := 2




6.- Find the symmetric equations of the line through zero perpendicular to the plane z-x-y=5.


> Line := [0,0,0] + t*[-1,-1,1];


                       Line := [0, 0, 0] + t [-1, -1, 1]


> symLine := { x=y,y=-z};

                          symLine := {x = y, y = - z}




7.- Do the line L and plane P intersect?


> L := {x=-3*t-1, y=2*t-2, z=t-1}; P := {x+y+z=3};


                  L := {x = - 3 t - 1, y = 2 t - 2, z = t - 1}

                              P := {x + y + z = 3}


> solve(L union P,{x,y,z,t});




no output! ... i.e. NO SOLUTION!


> solve(L union P,t);





No output again. Clearly they don't intersect.


Link to the commands in this file
Carlos Rodriguez <carlos@math.albany.edu>
Last modified: Tue Sep 24 13:39:31 EDT 1996