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Abstract. A bitnet is a dag of binary nodes representing a manifold of probability distributions
for a sequence of binary variables. Bitnets are riemannian manifolds of finite volume when Fisher
information is used as the metric. I compute the exact volumes for several interesting topologies
including the complete graph, the directed line ofn nodes, the exploding star (naive bayes) and
its reverse, the collapsing star. I show a fast algorithm for approximating the volumes of general
bitnets. Computer experiments show that the average Ricci scalar of bitnets is always half an integer.
Typically bitnets have singular boundaries obtained when some of the conditional probabilities for
the binary variables are either zero or one. At the singular points the Ricci scalar becomes negative
infinity.

INTRODUCTION

A bitnet, is a regular statistical model for a sequence of binary variables. The joint
probabilities of the sequence are efficiently described by a directed acyclic graph (dag)
whose vertices are the variables and whose directed edges indicate stochastic influence.
Figure (1) shows four examples of bitnets of 3 variables.

The assumption of a network of stochastic influences for the variables (i.e. a bitnet)
allows the following useful factorization of joint probabilities,

p(xV) = ∏
i∈V

p(xi |xpa(i)). (1)

WhereV is the set of vertices of the bitnet,pa(i)⊂V are the indices of the parents of
xi and ifA⊂V we denote byxA the set of bits with indeces inA.

It follows from (1) that all the joint probabilities are obtained from the values of
p(xi |xpa(i)). There are 2|pa(i)| possible values forxpa(i) and therefore we need that many
independent parameters in(0,1) for the ith node. Thus, the total number of independent
parameters in(0,1) necessary to specify all the joint probabilities of a bitnet is,

d = ∑
i∈V

2|pa(i)|. (2)

For example, the dimensions of the four bitnets in figure (1) are (from left to right):
7,5,5, and 6. This paper studies the geometry and topology of the hypothesis space of
all the probability distributions of a sequence of binary variables that satisfy the network
of stochastic dependencies encoded by a bitnet. By (1), there is a one to one map between



the objects in this set and the points in thed dimensional open unit cube. We call this
kind of hypothesis space a bitnet model.
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FIGURE 1. Four examples of bitnets. From left to right are: a)~K3 the complete dag of 3. b)~L3 the
directed line of 3. c)~E3 the exploding star of 3. d)~C3, the collapsing star of 3.

THE METRIC OF A BITNET MODEL

When |V| = n the information metric, (i.e., Fisher information matrix) hasn2 compo-
nents,

gi j (θ) = E(l i(X)l j(X)|θ) (3)

with,

lk(x) =
∂ logpθ (x)

∂θk
(4)

whereθ = (θ1, . . . ,θd) is the vector of parameters in thed-cube. In order to obtain a
simple expression for the metric and the volume of a bitnet, we need to introduce some
notation. Ifpa(i) = { j1, j2, . . . , jk} with j1 < j2 < .. . < jk then we denote byxpa(i) both,
the set of variables that are parents ofi and the integer obtained when writing the bits
that are parents ofi in ascending order, i.e.,

xpa(i) = x j1x j2 . . .x jk = x j12
k−1 +x j22

k−2 + . . .+x jk2
0. (5)

Also let,

m(i) = 2|pa(i)|

t(i) = m(1)+m(2)+ . . .+m(i−1)+1 (6)
k(i,x) = t(i)+xpa(i)

v( j) = max{i : t(i)≤ j}

In words,m(i) is the number of parameters associated to thei-th bit, t(i) is the index
of the first parameter ofi. Hence,(θt(i), . . . ,θt(i)+m(i)−1) is the vector of parameters
associated toi. The integerk = k(i,x) is such that,

pθ (xi |xpa(i)) = θ
xi
k (1−θk)1−xi (7)



For example, for~K3 (see figure (1)), the parameterθ5 represents the probability that bit 3
is on given that bit 1 is off and bit 2 is on. In this case,xpa(3) = 01 which is 1 in decimal.
Also t(3) = 4, k = 4+ 1 = 5 andv(5) = 3. Notice thatv is a kind of inverse oft; v( j)
gives the bit numberi associated to the parameterθ j .

We can now compute the derivative (4). Taking the logarithm of (1) and using (7) we
obtain,

lk =
∂ logpθ (x)

∂θk
=

{
−1

1−θk
if xi = 0, wheni = v(k) andxpa(i) = k− t(i)

1
θk

if xi = 1, wheni = v(k) andxpa(i) = k− t(i)
(8)

Notice thati is justv(k). It appears in the previous formula only to simplify the notation.
With (8) we computeg jk(θ) by noticing that the productl j ∗ lk has only four possible
values, 1

(1−θ j )(1−θk)
, −1
(1−θ j )θk

, −1
θ j (1−θk)

, and 1
θ j θk

. Thus, the expected value is just the sum
of each value times the probability of obtaining it. It is now straight forward to see that
when j 6= k,

g jk(θ) = (1−1−1+1)Pθ (xpa(v( j)) = a,xpa(v(k)) = b) = 0. (9)

Where we have used the fact that the probabilities for each of the four cases factorize
as a product of two terms whenj 6= k due to the conditional independence assumptions
implied by the bitnet model. But whenj = k there is no such factorization and,

g j j (θ) =

[
(1−θ j)
(1−θ j)2 −0−0+

θ j

θ 2
j

]
π j(θ)

=
π j(θ)

θ j(1−θ j)
(10)

where,
π j(θ) = Pθ [xpa(v( j)) = j− t(v( j))] (11)

Notice that theπ j form n sequences of probability distributions since, for eachi =
1, . . . ,n we have:

∑
v( j)=i

π j(θ) =
t(i)+m(i)−1

∑
j=t(i)

π j(θ) = 1. (12)

Since the metric tensor is diagonal, its determinant is the product of the diagonal entries.
The total intrinsic volume occupied by a given bitnet is then the integral over thed-cube
of the element of volume. We obtain the general expression,

vol(bitnet)=
∫
[0,1]d

√√√√ d

∏
j=1

π j(θ)
θ j(1−θ j)

dθ . (13)



Collecting j ’s according tov( j) = i we can also write,

vol(bitnet)=
∫
[0,1]d

n

∏
i=1

W1/2
i dθ (14)

where,

Wi = ∏
v( j)=i

π j(θ)
θ j(1−θ j)

=
∏r P[xpa(i) = r]

∏r θt(i)+r(1−θt(i)+r)
= ∏r pi(r)

∏r ρi(r)
(15)

the indexr = 0. . .m(i)−1 runs over all the possible values ofxpa(i) (see (5)) and the last
equality serves as a definition forpi(r) andρi(r).

Using the fact that all theπ j(θ) ≤ 1 (they are probabilities), the monotonicity of
integrals, Fubini’s theorem, and the Dirichlet integral:∫ 1

0

dt√
t(1− t)

= π (16)

(i.e., Beta(1/2,1/2) = π) we have,

vol(bitnet)≤ π
d, (17)

with equality, if and only if, the bitnet consists of totally disconnected nodes. In that
case,d = n, π j = 1, and the bits are independent variables. Thus, all bitnet models are
riemannian manifolds of finite volume in the information metric. The upper bound (17)
can be improved (see below).

VOLUMES OF SPECIAL TOPOLOGIES

We now provide exact formulas for the volumes of the four topologies exemplified in
figure (1):~Kn,~Ln,~En,~Cn.

Complete Dags:~Kn

The complete bitnet ofn nodes has all the available arrows. It has the highest possible
dimension,d = 20 + 21 + . . . + 2n−1 = 2n− 1 for a dag ofn. The hypothesis space
~Kn is nothing but the multinomial model of the discrete variable whose 2n outcomes
correspond to each possible binary sequence ofn bits. Instead of using the parameters
θ = (θ1, . . . ,θd) of conditional probabilities specified by the bitnet, one can always use
p = (p0, . . . , pd) with ∑ pi = 1 of the joint probabilities for each sequence ofn bits.
This maps thed-cube into thed-simplex. We can now map thed-simplex to the positive
part of thed-sphere of pointst = (t0, . . . , td) with ti > 0 and∑ t2

i = 1 by simply using
the standardti =

√
pi transformation. If follows immediately from this considerations

that the information volume of the complete bitnet is the same as that of the multinomial



which turns out (by using the standard
√

pi transformation) to be exactly half the volume
of the unitd-sphereSd, i.e.,

vol(Sd) =
2π

d+1
2

Γ(d+1
2 )

. (18)

Thus,

vol(~Kn) =
π2n−1

(2n−1−1)!
(19)

This sequence becomes exponentially small very quickly,

vol(~Kn) = π,π2,
π4

6
,

π8

5040
, . . .∼ 1√

2π

(
π

k

)k
e−k (20)

= 3.14,9.86,16.2,1.87,0.0000683, . . .

where the asymptotic expression is fork = 2(n−1) asn→ ∞. The Ricci scalar is, not
surprisingly, constant and it can be obtained from the corresponding value for the
multinomial model:

Ricci(~Kn) =
d(d−1)

4
=

(2n−1)(2n−1−1)
2

. (21)

The Directed Line:~Ln

Then nodes are connected linearly, i.e., one is the parent of two who is the parent of
three,. . . , who is the parent ofn. The dimension isd = 1+(n−1)2 = 2n−1. The exact
volume becomes very difficult to compute for values ofn≥ 4 but computer experiments
carried with the aid ofvTool1 show that,

vol(~Ln) = 4
(

π

2

)3n−4
. (22)

The first two casesn∈ {1,2} are trivial (they are also complete bitnets) so the values of
π andπ2 are inmediatly obtained. The casen = 3 is already not easy (maple can’t do it
alone) but a special change of variables in 3D shows that this volume must be the same
as the volume of~E2+1 which is π5

8 (see below equation (24)). Many other values ofn
have been estimated by Monte Carlo and they provide strong evidence to the validity of
(22). The Ricci scalar for the casen = 3 is computed withvToolas,

R= 5− 1
2ρ

(23)

1 vTool is a maple module available athttp://omega.albany.edu:8008/bitnets/ .



whereρ is the variance of the central node. I believe that to hold in general, i.e., that
the scalar curvature always depends on the variance of the central nodes. By looking at
the components of the Riemann tensor it is possible to show that the scalar curvature is
always independent of the parameters of the leave nodes.

The Exploding Star: ~En+1

One parent node withn children. This is what the machine learning community
calls Naïve Bayes. The children bits (e.g., the observed symptoms) are assumed to
be independent conditionally on the parent (the presence or absence of the disease).
This bitnet is by far the most popular bayesian network due to its simplicity and to
its surprising accuracy and robustness. As I argue below, their volumes can be used to
explain, at least in part, their success in applications.

The volume of~En+1 is easily obtained from the general formula (14),

vol(~En+1) =
∫ [

1
ρ1

ρ1

ρ2ρ3

ρ1

ρ4ρ5
· · · ρ1

ρ2nρ2n+1

]1/2

dθ (24)

separating the variables by Fubini, using (16) and defining,

B(r) =
∫ 1

0
tr/2(1− t)r/2 dt =

∫
ρ

r/2
i dθ =

Γ( r
2 +1)2

Γ(r +1)
(25)

we obtain,

vol(~En+1) = π
2n B(n−1). (26)

The sequence of volumes explodes exponentially,

vol(~En+1) = π
2,

π5

8
,
π6

6
, · · · ∼

√
2πn

(
π2

2

)n

(27)

= 9.87,38.25,160.24,698.69,3121.6, . . .

The computation of the scalar curvature was obtained with the help ofvTool. It depends
only on the varianceρ = ρ1 associated to the parent (center) node,

Ricci(~En+1) = R(ρ) =
n
2

[
(2n+1)− n−1

2ρ

]
≤ 3

2
n (28)

As ρ → 0 the scalar curvature diverges:R(ρ)→−∞. The boundary∂~En+1, consisting of
all the models with coordinatesθ ∈ [0,1]d with at least one componentθ j = 0, contains
the surfaceρ = 0 of singularities. This has an easy explanation. The estimation of the
parameters of the model obviously becomes more difficult when the variance of the
parent node is close to zero. If there is only one in a billion chance of observing a given
disease, we need billions of observations to estimate the probabilities with a Naïve Bayes



model. In the limit of zero variance we are at an inferential black hole. No information
(aboutanyof the parameters of the model) caneverbe extracted from data. Notice that
the scalar curvature does not depend on the parameters of leave nodes. That is always
the case for all bitnets.

The average scalar curvature,< R>, is computed by integratingRgiven by (28), with
respect to the volume element of~En+1 and dividing by the total volume (26). We obtain:

〈R〉=
n
2
. (29)

The Collapsing Star:~Cn+1

This bitnet corresponds to the one child of a promiscuous mother! i.e.,n parent nodes
with only one child. It has dimensiond = 2n + n and its volume is computed straight
forwardly from (14),

vol(~Cn+1) =
∫ {

1
ρ1

1
ρ2
· · · 1

ρn

[ρ1ρ2 · · ·ρn]2
n−1

ρn+1 · · ·ρn+2n

}1/2

dθ (30)

integrating out the parameters of the 2n leave nodes, using Fubini and the functionB
defined in (25) we can write,

vol(~Cn+1) = π
2n

B(2n−1−1)n (31)

With the aid ofvToolwe can show that the Ricci scalar has the form,

R= a−b

(
1
ρ1

+
1
ρ2

+ · · ·+ 1
ρn

)
(32)

where (a,b) depend only onn. The only known values are forn = 1,2,3,4. They
are (a,b) = (3/2,0),(10,1/2),(54,3),(272,14) with average Ricci scalars< R >=
3/2,2,6,?. Equation (32) tells us that, as geometric objects, a child node with only
one parent is radically different than a child node with two or more parents. When
n = 1 the space has constant scalar curvature but whenn ≥ 2 the curvature diverges
to minus infinity as we let the variance of any of the parent nodes to go to zero. So
what’s so different about the casesn = 1 andn = 2? What does curvature really mean
statistically? I think what makes the casesn = 1 andn = 2 different is that with only
two nodes we can reverse the arrow, obtaining a bitnet which is markov equivalent to the
original one (same V structures) but whenn= 2 reversing arrows produces a non markov
equivalent bitnet. Thus, with only one parent and one child, if the parent has a variance
very close to zero the apparent singularity disappears by the reparametrization implied
by the reversing of the arrow making the parent a leave node. Being a true geometric
invariant, the information contained in the Ricci scalar holds in all possible descriptions
(reparametrizations, markov equivalence transformations, etc..) of the model and it must
be telling us something significant about the difficulty of estimation at each point.



BOUNDS FOR GENERAL VOLUMES

For most large bitnets the exact computation of their volumes becomes impractical. This
section shows cook-book formulas for a lower and an upper bound for the volumes of
general bitnets. These bounds can be shown to be exact for complete bitnets and for
bitnets with maximum depth of 1 (i.e., bitnets without grand parents). The geometric
mean between the lower and the upper bound has been observed to perform remarkably
well in large simulation studies [1].

I claim that, the exact volumeZ of a general bitnet is always bounded betweenL and
U , i.e.,L≤ Z≤U where, the upper and lower bounds are given in terms of the function
B defined in (25), by

L =
n

∏
i=1

Bm(i)(ai) (33)

with

ai =−1+ ∑
j∈ch(i)

2|pa( j)|−|pa(i)|−1 (34)

and

U =
n

∏
i=1

Bm(i)(bi) (35)

with bi being the same as (34) except that now the sum does not run over all the children
of i, but only over those childrenj of i for which pa( j)⊂ pa(i).

THE IMPORTANCE OF VOLUMES

Why should we care about the volumes of bitnets? One answer is model selection. On
the one hand we want our models to be sufficiently large to be able to approximate
the true distribution closely. On the other hand we only have limited resources and we
need small models that can be handled efficiently. There are many ways to measure the
size of a model but, not surprisingly, the information volume is explicitly showing up in
the formulas. Consider, for example, the latest expression for the minimum description
length (MDL) criterion for model selection [2, 3],

MDL =−
N

∑
i=1

logp(yi |θ̂)+
d
2

log
N
2π

+ logV (36)

whereN is the sample size,(y1, . . . ,yN) is the observed data,θ̂ is the MLE of the vector
of parameters,d is the dimension of the model (number of free parameters) andV is the
information volume of the model. The MDL approximates the length of the best possible
code for the observed data that can be built with the help of the model. According to the
MDL criterion, the best model is the one that allows the shortest possible encoding of the



observations [2]. It so happens that (36) is also theo(1) approximation to− logP(M|y)
(see [3, 4]) i.e., minus the logarithm of the posterior probability of the modelM. Thus,
on the basis of the observed data alone, with no other prior information at hand, given
the choice between two models of the same dimensionality providing the same fit to
the data we must prefer the one with smaller volumeV. One must notice however,
that the volume only appears as the third term (of order 1= N0) of the asymptotic
expansion (asN → ∞). The first term (− log likelihood fit) scales linearly withN, the
second term scales linearly in the number of parametersd but logarithmically on the
sample sizeN. Thus, for sufficiently largeN, the volume term will eventually become
negligible but exactlywhenit does become negligable depends on the specific models
being considered. Simulation studies [1] show improvements in model selection of the
order of 28% on the average, when the expression (36) is used instead of the traditional
MDL without the volume term.

The modern expression for the MDL (36) exemplifies the natural desirability of mod-
els with small volume. Desirability for large volumes is naturally found on measures of
generalization power. As just one example consider the expression for the generalization
power of heat kernels [5],

logN (ε,FR(x)) = O

((
V

t
d
2

)
log

d+2
2

(
1
ε

))
(37)

whereN (ε,FR(x)) denotes the size of the smallestε-cover of the spaceFR(x) which
is the ball of radiusR (in the sup-norm) of functions defined on the datax in terms of
a heat kernelKt . The specific technicalities of this method of estimation are not very
important for us here. The main point is that for a given accuracy of estimation (ε),
between two competing models of the same dimensiond, we must choose the one with
the largest information volumeV in order to increase generalization power.

COMPLEXITY

Let us separate the expression (36) as,

MDL = Fit+Complexity (38)

where by “Complexity” we simply mean the sum of the last two terms in (36). These
are the terms that do not involve the observed data, only their numberN, the dimension
of the modeld, and its volumeV. Figure (2) shows the complexity terms for the~En and
~Ln bitnets for binary sequences of different lengthsn < 12 and for three sample sizes
N = 100,500,1000. The picture is clear. The complexities (actually just their volumes
for they have the samed) of the exploding star and the line are very similar straight
lines with the exploding star always above the line. Complexity increases with both, the
size of the networkn and the sample sizeN. This means that by adding more leaves
(symptoms) to a Naïve Bayes network we increase its complexity and by increasing its
volume we (probably) increase its power of generalization.

On the other hand figure (3) shows a very different behavior for the~Cn bitnet. The
complexity reaches a maximum saturation point and then decreases without bound.
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FIGURE 2. Complexity of~En and~Ln for different sample sizesN = 100,500,1000. The magnitude of
curves increases withN and Explode > Line

Thus, adding more parents may help increase generalization power but after crossing
the saturation size the bitnet will loose complexity and probably its power to generalize
correctly as well.

I do believe that there is more to the story of model complexity than what’s available
from (36). Recall that (36) is only the first three terms of an asymptotic expansion.
The neglected terms contain the model curvatures (see [4]) and by neglecting them we
are failing to account for the difficulty of extracting information out of the sample due
to the presence of high model curvatures. One may define model complexity in pure
geometric terms as< R> and then try to characterize the models of extreme complexity
with data and in the vacuum, without data. This type of variational problem has been
very successful at describing observational data in physics and a lot is already known
about it.
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