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Introduction

How can I honestly justify to myself and others, the use of one prior instead of
another? Where does prior information come from?

These questions are in the mind of anyone confronted with bayesian inference
for the first time. The usual: Relax, don’t worry, it doesn’t really matter much
what the prior is... after just a few observations the likelihood dominates over
the prior and we all end up agreeing about the posterior...etc, does in fact help
to reduce the level of anxiety of a soon to become bayesian acolyte but the
problem remains. Since, what if the prior does matter? Surely there must exist
situations where it matters what the prior is. Then what?

Herbert Robbins loved to make fun of the non-empirical faithful bayesians
by closing his eyes shaking, and saying: “and they deliver the prior!”. Almost
always he performed this act right after he finished showing how he could es-
timate the prior from the data and behave asymptotically as if he knew what
the prior was, allowing him to shrink the value of the loss in a compound de-
cision problem. He would then get back to those bayesians in his mind, again,
screaming loud and clear: “they can’t learn from data!l. I can!” and leaving
the room whistling the same military boot-camp tune that he arrived with. I
like to think that Herb would have been pleased to know that the conjugate
priors, that he often used, were in fact best possible in a precise sense. Thus,
not only the parameters of the prior, but the family of priors as well, are chosen
by objective data.

I started writing this as class notes for an undergraduate statistics course
at SUNY Albany. The reader I initially had in mind was a typical student
from my class for whom the course was likely to be the first encounter with
bayesian inference. But, right after dotting all the i’s for the simplest, most
canonical, gaussian examples, in one dimension, I realized to my own surprise,
that I had learned a few things that were not in the textbooks. First of all, a
pedagogical (if not plain conceptual) point. When writing the conjugate prior
for a gaussian mean p with known variance o do not write N(ug,03) but
N(uo,0%/vp). With the second form (which by the way is the form that comes



from the entropic prior) the posterior variance is simply 02 /(vp+n). Second, the
virtual data interpretation for the natural conjugate prior for the exponential
family, essentially breaks down unless the correct information volume element
dV is used. Third, and the most important lesson that I learned from my own
notes, the 1-priors even though they are not conjugate they are more ignorant
than the 0-priors. The 1-priors, just like the 0-priors can be thought as based
on a > 0 virtual observations. However, where the O-priors add the a virtual
observations to the actual n sample points, the 1-priors subtract the a from the
n!. I call this anti-data since « of these points annihilate a of the observations
leaving us with a total of n — a. I find this, as far as I know, new statistics
phenomenon very pleasing. True ignorance, that claims only the model and
the observed data, has a price. To build the prior we must spend some of
the information cash in hand. No free lunches. Thus, the posterior confidence
intervals for a gaussian mean with unknown variance could end up a little larger,
than the ones from sampling theory.

The Exponential Family

Let vector x € A have scalar probability density,
k
p(z|0) = exp Z Ci(0)T;(x) —T(x) —log Z(0)
j=1

defined for all § € © C R*. We say that the distribution of z is in the k-
parameter exponential family generated by the volume element dV in X when
the above is the density of probability with respect to this dV, i.e.,

Plz € Alf] = /Ap(z|0)dV.

The data space & is assumed to be independent of 6. The functions 7', C;, T}
for j = 1,...k and the normalizing constant Z (also known as the partition
function) are assumed to be (nice) functions of their arguments.

Many well known families of probability distributions are of this ezponential
type. For example, the Bernoulli, binomial, Poisson, beta, gamma, and Normal
families are all of this kind. For the case of the two parameter families (beta,
gamma and Normal) we can assume the first parameter, or the second param-
eter or none of them to have a given fix value and the resulting families are
also members of the general exponential family. Let’s consider the three cases
generated by the Normal as typical illustrations.

Gaussian with known variance: N(6,0?)

This is a one parameter family with density (w.r.t. dx) given by,

) = e (—(2‘0‘)))



by expanding the square and bringing the normalization constant into the ex-
ponential we can write,

@) = exp (Lo — T 1og 2(6)
p(|f) = exp | 2 — 55 —log

where the partition function is,

2

Z(0) = V2ro? exp(;?),

and, Cy = 0/02, Ty =z, T = 2% /(20?).

Gaussian with known mean: N(u,0)

The density is,

p(z]8) = exp (—(5”;9“)2 —log W) .

In this case, T = 0,7} = (z — p)%,C; = —1/(20) and, Z = /276.

General Gaussian: N(u,02),0 = (u,0?)

Here,
p(z]f) = exp ('UZQJ - i - £ 10gv27r(72)
o o
thus, T = 0,T) = x,Cy = p/o?, Ty = 22,Cy = —1/(20?) and

7Z =V2ma? exp(u®/20?)

Natural Priors for the Exponential Family

When the distribution of a vector z is in the k-parameter exponential family,
there is a simple recipe for priors. Make a (k + 1)-parameter exponential family
of priors for 6 by defining their scalar probability densities with respect to the
information volume element dV in {p(:|6) : 8§ € O} by,

k
1
p(8lt) = W P j;tjcj(a) —tolog Z(6)
where, t = (to,t1,...,tg) € {t : W(t) < oo} with,

k
W(t):/@exp > t;C5(0) —tolog Z(0) | dV
j=1



Prior information is encoded in the values of t,ts,...,t;. The strength of the
information supplied with ¢ is measured by t;. Hence,

Plo € Alt] = / p(B]t) dV
A

where the information volume element dV is given by,

dV = A/ det(g,-j (9)) do

and,

gi;(0) = 4 / 0i/p(@lf) 0;/p(@lf) plz16) da
X
are the entries of the information matrix.

What’s so Natural About These Priors?

Here is another one of Herb’s screams to the rescue: “Parameters are ghosts.
Nobody has ever seen a parameter!”. How right. I would add, that probability
distributions are also ghosts. No one has ever seen a probability distribution
either (but that doesn’t make me a deFinettian though). In fact all we ever
see, as much as we see anything, is data. Thus, a natural (if not only) way of
providing prior information about the ghostly parameters 6 is to write down
to typical examples: x_1,z_2,...,2_4, of data that is expected to resemble,
as much as possible, the actual observations. This is sometimes possible to
implement even with a set of self-nominated domain experts. It has the added
virtue that the more the experts disagree among themselves, the better prior
you end up with. With the prior data in hand it is now very reasonable to want
the prior probability around # to be proportional to the likelihood of the prior
examples. Just like the rationale for maximum likelihood. In symbols,

pOlr_1, 20, .., &_t,)) X P(T_1,T_2,...,T_4|0).

Or if you like, just bayes theorem with uniform (Jeffreys) prior. If the likelihood
is assumed to be in the same k-parameter exponential family of the actual data
(and if that is not a reasonable assumption for the virtual data in hand, then
you need to throw away your model and/or interrogate some of your experts)
then,

k to
pOlz_1, 2 2,...,2 4 ) oxexp Z Oj(a) ZTj(m—z’) —tolog Z()
i=1

Jj=1

which is the natural conjugate prior for the exponential family with prior pa-
rameters,



to
t; = ZTj(x_i) forj=1,...,k
i=1

Hence, there is a simple and useful interpretation for the inferences obtained
with the aid of these priors. A bayesian using the natural conjugate prior for
the exponential family acts as if s/he has extra to observations with sufficient
statistics tq,...,tg. Thus, reliable prior information should be used with a large
value for tg and weak prior information should be used with a small value for
to- The values for ¢ (and therefore the prior examples) need to be restricted to
the set that allows the resulting prior to be normalizable, otherwise they can’t
be used. The smallest possible value for ty that still defines a normalizable
prior, could be used to define a simple notion of ignorance in this context. We
illustrate the general points with the three Normal families considered above.

Posterior Parameters

When the likelihood is a k-parameter exponential family and the natural con-
jugate prior with prior parameter ¢ is used, the posterior after a sample ™ =
(z1,...,2n) of n iid observations is collected is given by bayes theorem. Using
the iid assumption for the data, collecting the exponents of the exponentials,
and dropping overall multiplicative constants independent of § we obtain,

p(Bla",t) o p("|6)p(6]1)
k n
o< exp | 3 (t + D Ti(2))C5(0) = (to +m)log Z(9) | o< p(611™)

=1

where the (k + 1) new parameters t("™) are obtained from the simple formulas,

n
i=1

Natural Prior for u|02 is N (o, %;)

When the likelihood is Gaussian with a given variance o2, the natural prior for
the mean 6 = p is the two parameter family obtained by replacing the sufficient
statistic 7y = & € R by the prior parameter t; € R, replacing log Z by tglog Z
and dropping multiplicative constants independent of 8 in the exponential family
likelihood for the N(6,0%). The scalar probability density with respect to dV =
du is,

2 2

o

p(plto, 1) ox exp (—tOQM 5+t 'i) o N(pg, —)
a a Vo



the middle expression is integrable over u € R (the real line) only when ¢y > 0
and t, € R. Thus, o = i—; € R and vy =ty > 0. To compute the posterior
we just apply the general updating formulas. In this case, the posterior is

N (pn, Uz/”n) where,

Vofbo + NTy
Vn:l/0+n7 Hp = ————————

Vg +n

is immediately obtained from the updating formulas for ¢, and #;. Notice that

the posterior parameters v, and p, are the number of observations and the

mean of the observed data xy,xs,...,z, augmented by vy extra observations

Tpt1s Tnt2,- - -, Tnty, With mean pyg.

Natural Prior for |y is x %(vo, 07)
When the likelihood of an observation is x| ~ N(u,6) we have,

1 . 1
p(al6) ox exp (—%m - 2loge)
and the natural prior is given with respect to dV = df/8 as,

p(Olto, 1) ox 6~ F exp(—;—le).

In order for this last function to be integrable over the region 0 < 6 < oo with
respect to df/f, it is necessary that ty > 0 and ¢; > 0. This can be seen by
finding the density of £ = t1/6 to be Gamma(ty/2,1/2), i.e. a chi-square with
vy = tg degrees of freedom. We define an inverse chi-square by,
_ Vol
6 ~ x?(vo,0p) <= % ~ Xoo
and we say that € follows an inverse chi-square with vy degrees of freedom and
scale y. Also,
v 6o\ db
6~ X_Q(Vo,eo) < p(#) dh x 6= exp _t% —.
20 0
The natural family of priors for o?|u is then x2(vp,08) with vgo3 = t; > 0
and vy = to > 0.
The posterior parameters v, and o> are obtained from the prior parameters
and the observed data as,

n

2 2 2

Vp =1y +n, and v,o. = vyog + E (z; — p)°.
=1

Again, these parameters are the number of observations and the sum of the
squared deviations with respect to u of the observed data x4, ..., z, augmented
by vy extra points Zp41,...,Tpty, With,

vo

S nsi — 1) = w0 03

i=1



The Natural Prior for 6 = (p,0?)

We show here that when both the mean and the variance of a Gaussian are
unknown the natural prior for the vector (u,o?) is simply the product of the
two distributions obtained above, i.e.,

(1, 0%) ~ x> (v0,04) N(po,0”/vo)

which is a three parameter family. To see it, just write the likelihood for one
observation disregarding overall proportionality constants independent of § =
(u,v) where we now let v = 0?),

1 1
palt) o exp (50— - jlogo)
e ! 242 o 1lo
NS
X P 211” vu 2v 2 g v

and use the recipe for the prior: Replace 77 = x € R by a parameter t; € R,
replace 7o = x> > 0 by a parameter t5 > 0 and multiply the rest of the terms
in the exponent by the strength parameter 5. In general the vector of prior
parameters ¢t needs to be restricted to the set for which the resulting prior is
proper. In this case, the information volume element is,

dudo®  dudv

x
o3 3/2

dV

and the scalar probability density with respect to this dV is,

2
7 1 ty ty \ dudv
p(0|t)dV o exp <—t0 (21) + Elog 'U) + P 21}) 872

to t() dv t() 2 11 1
x {exp <_2v — 2logv> v} {exp <—2v,u + Z,u iz du
o< X"*(vo,05) N(po,0® /vo) dpdv
where we made the substitutions,

ty
vy = to, Nozfa 052
0

to
to’

To obtain the posterior parameters vy, i, and o2 we apply the following general
recipe. Combine the sufficient statistics for the observed data z1,xs,..., %,
which in this case are the observed mean and variance, i.e. Z:.L:l r; = nZ, and
Soi . (2;—Zn)?, with the sufficient statistics for the v virtual extra observations,
Tpi1s- s Tntvy, Namely Y 0 Tpii = vopo and Yoo (Tpti — po)? = v903. To
obtain the updating formulas we simply pool together all the data. The actual
observations with the virtual observations. We then have,



Vofbo + NTx

Vp =1+ N, Uy =
Vg +n

as the total number of points and the overall mean. Finally, the new variance
is obtained simply from,

vo+n

Vnoy = Z (i — pn)?

i=1

This, however needs to be simplified to an expression containing only available
data since the virtual observations are only given through the value of the
sufficient statistics, vouo and vgog. Towards this end, we split the sum and add
and subtract the sample mean Z, to the first term and add and subtract the
prior mean pg to the second term, obtaining,

n vo

vno, = Z(l‘z’ — Tn + T — pn)” + Z(%ﬂ — o + po — fin)?
i=1 =1
n

= Z(mz - in)g + n(fn - ljf’n)2 + VOO-(Q) + VO(HO - ,un)2

i=1
= [U(% + (,UO - //fn)2] +n [672L + (jn - ///n)2]
A nvy _
= wvyoj +néi + n n(wn — 1o)%.

Any of the last two identities can be computed from the values of the sample
and prior means and variances.

Direct Computation of the Posterior

It is a bit harder to check that the above formulas actually come from a direct
application of bayes rule. For completeness we show here all the steps. We have
data z" = (x1,...,xy,) iid N(u,v), the parameter is § = (u,v) and the prior
is the natural prior obtained above, i.e., the joint prior distribution of (u,v) is
given as the marginal distribution v ~ x ™2 (v, 02) multiplied by the conditional
distribution plv ~ N(uo,v/vp) with both densities given with respect to the
standard Lebesgue measure. By bayes theorem and the underlying assumptions
we have that the posterior density, but now with respect to the usual dV = dudv,
is given by,

p(0|z") o p(z™|6) p(6)

. -1 :
x v /2exp<2vg (mi—ﬂ)2>
i=1



p—0/2-1 exp <_V008>
2v

—1/2 — 2
v exp | — (u —
p( 5, (M~ Ho) >
adding and subtracting the sample mean inside the summation, expanding the
squares, simplifying, collecting terms, and letting 62 to be the sample variance,
e, no =" (z; — T,)* we get,

i 1
plz") o v ET T exp (211(1/005 ¥ "&3)>
. 1 ~
v 2 exp <2U[(V0 +n)p? —2(vopo + nj”)“]>

exp (o Do + (21

now, the middle line clearly shows that plv ~ N(u,,v/v,) but we need to
complete the square explicitly to be able to identify the marginal distribution
of v. We must be careful, not to add extra multiplicative terms containing the
variance v and so what needs to be added to complete the square also needs to
be killed explicitly. That’s the reason for the second exponential in the second
line below.

—(vg+n) -1
pflz") x v 2 1exp(2v(ugag+n&i)>

exp (W(u — un)2> exp (Wﬂi)

exp (o Do + (2.1

finally collect all the terms and simplify,

p(0z") o v VZexp <—<Ifo+n>(#_un)2>

where,

(vo+n)A = (vo+n)(wops +1(2,)*) — (vopo + nin)®
= von(ud + (Zn)* — 2p0,)
= von(z, — po)>
Which shows that the marginal distribution of v is indeed x~2(v,,,02) with the
updating formulas for v, and o2 as previously given.



The Natural Priors are Entropic

The natural conjugate priors for the exponential family are a special case of
a larger and more general class of priors known as entropic priors. Entropic
priors maximize ignorance and therefore the natural conjugate priors for the
exponential family inherit that optimality property. Thus, the priors introduced
above are not only convenient, they are also best in a precise objective sense.

Entropy and Entropic Priors

Here I try to minimize technicalities and full generality in favor of easy access
to the main ideas. Let’s start with entropy. It is a number associated to two
probability distributions for the same data space AX'. It measures their intrinsic
dissimilarity (or separation) as probability distributions. For distributions P, Q)
with densities p and ¢, with respect to a dV in X', define

q(x) q(x)

as their entropy. The I is for Information and the : is for ratio. This notation
makes I(P : Q) # I(Q : P) explicit. The operator E, denotes expectation
assuming = ~ p. Even though the definition of I(P : @)) uses the densities p, g
and a volume element dV', the actual value is independent of all of that!. The
number I(P : @) depends only on the probability distributions P, () not on the
choice of dV that it is needed for defining densities p, q. There is a continuum
of measures of separation I5(P : Q) for 0 < § < 1 that fills up the gap between
Ipn =I(Q : P) and I} = I(P : Q). In fact, I(P : @) is the mean amount of
information for discrimination of P from () when sampling from P; I(Q : P)
same but when sampling from @ instead; I5(Q : P) sort of when sampling from
a mixture in between P and ). What’s important is that these I5 are essentially
the only quantities able to measure the intrinsic separation between probability
distributions. In here we’ll be considering only the two extremes Iy and I;.

I(P:Q)=E, [log p(:c)} = /Xp(m) logM av

Entropic Priors for the Exponential Family

When the distributions P, are on the same exponential family we label them
by their parameters 1 and 6 and compute,

k
I7:6) = (Gl = C4(6) 73 ~ log )

Jj=

straight from the above definition. Where,

7y = By [Tj(2)] = E[T;(x)n] = 7;(n)

is the expected value of the j-th sufficient statistic when = ~ p(z|n).

10



The 0-entropic family of prior distributions for 8 with parameters a > 0 and
0y € O is given by the following scalar densities with respect to the information
volume in ©,

p(Blo, By) o e~ Toib0) o pmal(80:6)

k
X exp Z C;(8) ar; — alog Z(0)
j=1

where now 7; = 7;(6y). This is exactly the density of the natural conju-
gate prior for the exponential family with prior parameter t = (a,ar) =
a(]-aTlaT?: tee 7Tk)'

Examplel: z|0 ~ N(0,0?)

In this case,

6o 9 693/202
I(6g:0) = <02 - 02) to — log 002 /207
5 06 65 6%

202 o2 202 202
&P

202 202 202"

Thus,

1(00:9):1(9:90):%

and the 0-entropic prior coincides with the 1-entropic prior. The density w.r.t.
df is,
—Oé(0 — 00)2

p(f|a,0p) x exp ( 572

> ocN(GO,%Q)

Example2a: O-prior when z|6 ~ N(u,6)
For this case we have, C; = —1/26, T} = (z — p)? and Z = v276. Hence,

-1 -1 1 6

1 s = _— — =1 _—

(60 : 6) <200 29> b= 3loey
b 1 1, 6

20 2 2%%

and the element of probability for the 0-entropic prior is computed with dV =
dh /0 as,

11



exp (—al(fy : 6)) % o g—a/QeXp<—0é00> db

26 6
o x*(a,b) db

and as expected, coincides with the previously obtained natural conjugate prior
for this case. Recall that the conjugate posterior for this case is, x ~2(n+a, &;ZHQ)
where we have written o2 with a hat and with index n + a to make explicit the
fact that it is the variance associated to the sample extended by the « virtual
points.

Example2b: 1-prior when z|6 ~ N(u,6)

By interchanging € with 6y in the previous formula for the entropy we obtain
the element of probability for the 1-entropic prior,

exp (—al(6 : b)) d?f x 6% exp (;gf) %9

o x*(a, ) db

where we say that 6 ~ x?(«, 6y) when the density (w.r.t. the usual df) of af/6,
is x2, i.e. a chi-square with a degrees of freedom.

By bayes theorem, the 1-posterior (i.e. the posterior when the 1-prior is
used) w.r.t. the usual df has the form,

A9
N SCES Y —-no,  «
p(f|z", a, bp) x 0 exp < 59 %, 0>

where no2 = Y0 (z; — p)?.

The family of GIGs

The above distribution is known as Generalized Inverse Gaussian (or GIG). A
GIG(a, b, c) has density proportional to %! exp(—b/6 — cf) defined for 6 > 0
and it is normalizable whenever a € R, b > 0 and ¢ > 0. When, either b = 0
or ¢ = 0, but not both zero, the GIG becomes a gamma or an inverse-gamma.
The normalization constant involves the BesselK function and it is expensive to
compute. It is easy to see that the GIGs have the following property,

6 ~GIG(a,b,c) <= 1/8 ~GIG(—a,c,b).

When a > 0, and ¢ > 0 the best second order Gamma(«, ) approximation to
a GIG(a, b, ¢) is obtained by matching the quadratic Taylor polynomials for the
log likelihoods expanded about the mode of the GIG. The values of a and g are
given by the simple formulas,

12



a = a+ —
m

ﬂ =

where m is the mode of the GIG(a, b, ¢) located at,

m:i(a—1+\/(a—1)2+4bc).

2c

Furthermore, when 2b/m << a and be/(a — 1)? << 1 the formulas simplify to
a =a and = ¢ (just expand the square root to first order).

The Approximate l-posterior for N(u,6)

Using this (just obtained above) gamma approximation for the GIG, valid for
n large (often n > 3 is enough. See the figures),

p(B|z™, a,0y) o< x 2 (n — a, 6i_a)
where we have used the definition,

o

n
nea = n— a&i'

This shows that the 1-posterior is just like the 0-posterior but with n — «
points instead of n + « points. I find this remarkable. It is the first indication
that the 1-prior is indeed less informative than the conjugate O-prior. This also
shows that, in this case, the number of virtual data points acts as a negative
number!. Here is a possible rationalization for this paradoxical result. The
1-prior takes into account the inherent higher uncertainty in the prior data
relative to the actual data. In fact, as it is usually the case, if the value of 8y is
estimated from the observed data, it is only natural that the number of degrees
of freedom should be reduced due to the double use of the data. This is not
unlike the reduction of degrees of freedom for the likelihood ratio statistic when
free parameters need to be estimated from the data.

In figurel the actual 1-posteriors for 1/6 are shown for sample sizes of 1,2, 5
and 10 points. Notice that the curves very quickly become indistinguishable
from a gamma and eventually a gaussian distribution. The Laplace-gamma and
naive gamma approximations are shown in figure2 for the case n = 1 and in
figure3 for the case n = 3. With only one data point the approximations are
not good but with just n = 3 both approximations become very similar to the
actual posterior.

Example3: z|0 ~ N(u,v) with 8 = (u,v)

Now,

13
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Figure 1: The posterior GIGs for 1/8 when a = 0.1,6p = 62 = 1 and n =
1,2,5,10 =(green,red,blue,black)
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Figure 2:
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When n=1, GIG(0.45,0.05,0.5) (black); Laplace-Gamma(1.6,7.5)

(red); Gamma(0.45,0.5) (blue)
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Figure 3: GIG when n=3 (black); Laplace-Gamma approximation (red);

Gamma approximation (blue)
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2
1% T 1 2
P | u”/v
p(z|6) o exp <U:1: 5, ~ 3108 ve >

from where we compute,

2
Mo I -1 -1 . 1 vgeto/vo
1(6p:0) = <vo_v> Ho + <— ) (vo + 115) —§logW

2 2
) Mo Mo b Vo 1 1 Vo
= —_ _—— — ——7—71 —_
2v+2v v+2v 2 QOgv

_ W—W+{vo_1_1b vo}
2v

and the O-prior probability element coincides with what was obtained for the
natural conjugate prior,

dpdv _ v
exp (—al (b, : 6)) U/;T o X% (a,v0) N(po, a) dudv.

On the other hand, the 1-prior, which is non-conjugate in this case, can be
easily computed by interchanging 6y with € in the expression for the entropy.
We have,

dudv

exp (_QI(G : 00)) 1)37

. v
X Xz(a;v()) N(,LL(), a) d/j’dv

The 1-posterior can be computed from bayes theorem, along the lines of the
explicit calculation for the O-posterior. We obtain,

ny dpdv —1/2 —(a+n)(p — pn)?
pp,v|z )v?,/2 o {v exp 5 dp

eyt g (T2 p @ o QY
v exp < 50 [67 + o n(ar;n o) 200 v

o8 {N <Mn; Oéj-ﬂ) X_2 (TL - a7aA-‘72La)} d/J/dU

where the last expression is valid for n large and a small as before.

The Marginal 1-Posterior for p

From the last approximation we can integrate over the variance v to obtain the
marginal posterior distribution for u,

pule) = [ plnele®)
0 v

17



[e'e] -1 P
o / v~ (nmet /2= oy <2v [(n— )5 _o + (n+a)(p— un)2]> dv
0

o7 —(*=5H)
1+L+a (HA_/ML> ]
n—oa \ Opa

2
from where we obtain that for n large and « small,

X

H = En
On—o/Vn+a

i.e., a student-t distribution with n — a degrees of freedom. Thus, the a virtual
prior observations supporting the 1-prior act as anti-data, annihilating an equal
number of actual observations and reducing the degrees of freedom to n — a.
The 1-posterior confidence intervals for p are larger than the corresponding
0-posterior intervals.

"~ th—a

The Actions for Ignorance

Alas the 0-entropic, the l-entropic prior is in general non conjugate and the
inference usually needs to be done by Monte-Carlo. Nevertheless, the 1-priors
optimize a notion of ignorance that is remarkably simple (see below).

The 1-prior is the one (and only one) 7 that makes it most difficult to discrim-
inate the joint distribution of (z%,0) (i.e., w(0)p(x1|0)p(z2]0) . ..p(z4|0) = p*7)
from the factorized model p(z*|6p)w(f) = p§w with w(#) the uniform (normal-
ized volume) on O. In other words, the 1-prior is,

7" = argmin I (p“w : pjw)
™

The expression for this entropy simplifies to a quantity with an easy inter-
pretation. Compute as follows:

I(p®7: pfw) = /pa(x|0)7r(0)logmdmad9
o o0 O]
= [ telorme) fiog ) + tog T | s
_ . (9)
- /w(&)a[(ﬂ.00)d0+/7r(0)10gmd0

= a/w(ﬂ)[(ﬁ:@o)dﬁ—f—/ww) log :EZ; d.

Thus, the 1-entropic prior 7*(#) is the result of a compromise between mass
concentration about 6y so that I(f : ) remains small and uniform spread
allover the model so that I(7 : w), which is the second term of the sum above,
is also small. To obtain the solution 7* that minimizes this last expression for
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the entropy, among all proper priors with [7 = 1 is an easy exercise in the
calculus of variations. However, for our simple case that involves no derivatives
of 7, the general Euler-Lagrange equations are an overkill. The necessary and
sufficient conditions for the optimal can be readily justified if we replace the
infinite dimensional vector 7w by a large but finite dimensional approximation
(m1,m2,...,mN) of piecewise constant values on a discretization of © into N little
volumes. Thus, we only need to add a Lagrange multiplier for the normalization
constraint and set all the partial derivatives equal to zero and obtain the usual
Euler-Lagrange equations in the limit as N — co. Therefore, to minimize [ £df
with,

£=a7rl—|—7rlogz+/\7r
w

we need,

9L ol 4log™ +1+1=0
on w

from which we obtain the 1-prior,

*

T —Ceo!
w
with C chosen to satisfy the constraint [ 7* = 1.

The split of the original form of the entropy into the two terms a < I(. : 6g) >
+I(m : w) suggests several generalizations. First of all, the parameter a > 0
does not need to be an integer anymore. Secondly, the two I’s can be replaced
by Is with two different values for § obtaining the general three-parameter class
of invariant actions for ignorance. All the ignorance priors obtained as the
minimizers of these actions share a common geometric interpretation illustrated
in figure [4]. In particular, the 0-priors minimize,

a/w(ﬁ)[(ﬂo : 9)d0+/7r(0) log ZEZ;da

with solution identical in form to the 1-priors but with I(fy : ) in the exponent
instead of I(f : 6p). Thus, the natural conjugate priors for the exponential
family are most ignorant in this precise objective sense: the O-priors are the
only proper minimizers of the action above.

Virtual Data and Anti-Data

The 0-priors and the 1-priors are in general quite different. However, we expect
the posterior distributions computed from these priors to get closer to one an-
other as more data becomes available. In this section we show that the concept
of “anti-data” associated to 1-priors, discovered for the special case of the esti-
mation of the mean and variance of a gaussian distribution, holds in general in
the exponential family where the log likelihood for n observations is,
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All distributions

Figure 4: The model M = {p}, the true distribution ¢, the projection of the
true onto the model is ¢q. Priors are random choices of p € M
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k n

log p(z"|0) = exp(z C;(6) Z Tj(x;)) — nlog Z(#) + (other)

j=1 i=1

where the “(other)” terms do not involve . For the exponential family the
0-prior my, and 1-prior 71, are such that,

3
[oF]
3
o
=
R
>
N
I
o
-

7j(60)C;(0) — alog Z(8) + (other),

k
log 71 (0|c, 0p) = —a Z C;(8y)]7;(8) + alog Z(8) + (other).

Thus, for the 0-posterior

k n
log o (8]2™, a, o) = Z[on'j(eo) + ZTj (z:)]C;(0) — (n+ a)log Z(8) + (other)

j=1 i=1

and for the 1-posterior,

logmy (0]z", v, ) = Z(—a[cj(e)—cj (60)]7;(8)+C;(8) Z Tj(z;))—(n—a) log Z(6)+ (other).
We notice that,

k
log 71 (B|z™, a, 00) = log mo(B|z™, —av, 6p) O‘Z C;(8o)][r;(0)—7j(60)]+ (other)

which shows that in the limit of weak prior information (i.e., as & — 0) this
1-posterior approaches the O-posterior but with —« instead of a.
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