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Introduction
How can I honestly justify to myself and others, the use of one prior instead ofanother? Where does prior information come from?These questions are in the mind of anyone confronted with bayesian inferencefor the �rst time. The usual: Relax, don't worry, it doesn't really matter muchwhat the prior is... after just a few observations the likelihood dominates overthe prior and we all end up agreeing about the posterior...etc, does in fact helpto reduce the level of anxiety of a soon to become bayesian acolyte but theproblem remains. Since, what if the prior does matter? Surely there must existsituations where it matters what the prior is. Then what?Herbert Robbins loved to make fun of the non-empirical faithful bayesiansby closing his eyes shaking, and saying: \and they deliver the prior!". Almostalways he performed this act right after he �nished showing how he could es-timate the prior from the data and behave asymptotically as if he knew whatthe prior was, allowing him to shrink the value of the loss in a compound de-cision problem. He would then get back to those bayesians in his mind, again,screaming loud and clear: \they can't learn from data!. I can!" and leavingthe room whistling the same military boot-camp tune that he arrived with. Ilike to think that Herb would have been pleased to know that the conjugatepriors, that he often used, were in fact best possible in a precise sense. Thus,not only the parameters of the prior, but the family of priors as well, are chosenby objective data.I started writing this as class notes for an undergraduate statistics courseat SUNY Albany. The reader I initially had in mind was a typical studentfrom my class for whom the course was likely to be the �rst encounter withbayesian inference. But, right after dotting all the i's for the simplest, mostcanonical, gaussian examples, in one dimension, I realized to my own surprise,that I had learned a few things that were not in the textbooks. First of all, apedagogical (if not plain conceptual) point. When writing the conjugate priorfor a gaussian mean � with known variance �2 do not write N(�0; �20) butN(�0; �2=�0). With the second form (which by the way is the form that comes
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from the entropic prior) the posterior variance is simply �2=(�0+n). Second, thevirtual data interpretation for the natural conjugate prior for the exponentialfamily, essentially breaks down unless the correct information volume elementdV is used. Third, and the most important lesson that I learned from my ownnotes, the 1-priors even though they are not conjugate they are more ignorantthan the 0-priors. The 1-priors, just like the 0-priors can be thought as basedon � > 0 virtual observations. However, where the 0-priors add the � virtualobservations to the actual n sample points, the 1-priors subtract the � from then!. I call this anti-data since � of these points annihilate � of the observationsleaving us with a total of n � �. I �nd this, as far as I know, new statisticsphenomenon very pleasing. True ignorance, that claims only the model andthe observed data, has a price. To build the prior we must spend some ofthe information cash in hand. No free lunches. Thus, the posterior con�denceintervals for a gaussian mean with unknown variance could end up a little larger,than the ones from sampling theory.
The Exponential Family
Let vector x 2 X have scalar probability density,

p(xj�) = exp
0@ kX

j=1Cj(�)Tj(x)� T (x)� logZ(�)
1A

de�ned for all � 2 � � Rk. We say that the distribution of x is in the k-parameter exponential family generated by the volume element dV in X whenthe above is the density of probability with respect to this dV , i.e.,
P [x 2 Aj�] = Z

A
p(xj�)dV:

The data space X is assumed to be independent of �. The functions T;Cj ; Tjfor j = 1; : : : k and the normalizing constant Z (also known as the partitionfunction) are assumed to be (nice) functions of their arguments.Many well known families of probability distributions are of this exponentialtype. For example, the Bernoulli, binomial, Poisson, beta, gamma, and Normalfamilies are all of this kind. For the case of the two parameter families (beta,gamma and Normal) we can assume the �rst parameter, or the second param-eter or none of them to have a given �x value and the resulting families arealso members of the general exponential family. Let's consider the three casesgenerated by the Normal as typical illustrations.
Gaussian with known variance: N(�; �2)This is a one parameter family with density (w.r.t. dx) given by,

p(xj�) = 1p2��2 exp
�� (x� �)22�2

�
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by expanding the square and bringing the normalization constant into the ex-ponential we can write,
p(xj�) = exp� ��2x� x22�2 � logZ(�)�

where the partition function is,
Z(�) = p2��2 exp( �22�2 );and, C1 = �=�2; T1 = x; T = x2=(2�2):

Gaussian with known mean: N(�; �)The density is,
p(xj�) = exp�� (x� �)22� � logp2��� :

In this case, T = 0; T1 = (x� �)2; C1 = �1=(2�) and, Z = p2��.
General Gaussian: N(�; �2); � = (�; �2)Here,

p(xj�) = exp� ��2x� x22�2 � �22�2 � logp2��2�
thus, T = 0; T1 = x;C1 = �=�2; T2 = x2; C2 = �1=(2�2) and

Z = p2��2 exp(�2=2�2)
Natural Priors for the Exponential Family
When the distribution of a vector x is in the k-parameter exponential family,there is a simple recipe for priors. Make a (k+1)-parameter exponential familyof priors for � by de�ning their scalar probability densities with respect to theinformation volume element dV in fp(�j�) : � 2 �g by,

p(�jt) = 1W (t) exp
0@ kX

j=1 tjCj(�)� t0 logZ(�)
1A

where, t = (t0; t1; : : : ; tk) 2 ft :W (t) <1g with,
W (t) = Z� exp

0@ kX
j=1 tjCj(�)� t0 logZ(�)

1A dV
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Prior information is encoded in the values of t1; t2; : : : ; tk. The strength of theinformation supplied with t is measured by t0. Hence,
P [� 2 Ajt] = Z

A
p(�jt) dV

where the information volume element dV is given by,
dV =qdet(gij(�)) d�

and,
gij(�) = 4 Z

X
@ipp(xj�) @jpp(xj�) p(xj�) dx

are the entries of the information matrix.
What's so Natural About These Priors?Here is another one of Herb's screams to the rescue: \Parameters are ghosts.Nobody has ever seen a parameter!". How right. I would add, that probabilitydistributions are also ghosts. No one has ever seen a probability distributioneither (but that doesn't make me a deFinettian though). In fact all we eversee, as much as we see anything, is data. Thus, a natural (if not only) way ofproviding prior information about the ghostly parameters � is to write downt0 typical examples: x�1; x�2; : : : ; x�t0 of data that is expected to resemble,as much as possible, the actual observations. This is sometimes possible toimplement even with a set of self-nominated domain experts. It has the addedvirtue that the more the experts disagree among themselves, the better prioryou end up with. With the prior data in hand it is now very reasonable to wantthe prior probability around � to be proportional to the likelihood of the priorexamples. Just like the rationale for maximum likelihood. In symbols,

p(�jx�1; x�2; : : : ; x�t0) / p(x�1; x�2; : : : ; x�t0 j�):
Or if you like, just bayes theorem with uniform (Je�reys) prior. If the likelihoodis assumed to be in the same k-parameter exponential family of the actual data(and if that is not a reasonable assumption for the virtual data in hand, thenyou need to throw away your model and/or interrogate some of your experts)then,

p(�jx�1; x�2; : : : ; x�t0) / exp
0@ kX

j=1Cj(�) t0X
i=1 Tj(x�i)� t0 logZ(�)

1A
which is the natural conjugate prior for the exponential family with prior pa-rameters,
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tj = t0X
i=1 Tj(x�i) for j = 1; : : : ; k

Hence, there is a simple and useful interpretation for the inferences obtainedwith the aid of these priors. A bayesian using the natural conjugate prior forthe exponential family acts as if s/he has extra t0 observations with su�cientstatistics t1; : : : ; tk. Thus, reliable prior information should be used with a largevalue for t0 and weak prior information should be used with a small value fort0. The values for t (and therefore the prior examples) need to be restricted tothe set that allows the resulting prior to be normalizable, otherwise they can'tbe used. The smallest possible value for t0 that still de�nes a normalizableprior, could be used to de�ne a simple notion of ignorance in this context. Weillustrate the general points with the three Normal families considered above.
Posterior ParametersWhen the likelihood is a k-parameter exponential family and the natural con-jugate prior with prior parameter t is used, the posterior after a sample xn =(x1; : : : ; xn) of n iid observations is collected is given by bayes theorem. Usingthe iid assumption for the data, collecting the exponents of the exponentials,and dropping overall multiplicative constants independent of � we obtain,
p(�jxn; t) / p(xnj�)p(�jt)

/ exp
0@ kX

j=1(tj +
nX
i=1 Tj(xi))Cj(�)� (t0 + n) logZ(�)

1A / p(�jt(n))
where the (k + 1) new parameters t(n) are obtained from the simple formulas,

t(n)0 = t0 + n; t(n)j = tj + nX
i=1 Tj(xi) for j = 1; : : : ; k

Natural Prior for �j�2 is N(�0;
�2

�0
)

When the likelihood is Gaussian with a given variance �2, the natural prior forthe mean � = � is the two parameter family obtained by replacing the su�cientstatistic T1 = x 2 R by the prior parameter t1 2 R, replacing logZ by t0 logZand dropping multiplicative constants independent of � in the exponential familylikelihood for the N(�; �2). The scalar probability density with respect to dV =d� is,
p(�jt0; t1) / exp��t0 �22�2 + t1 ��2

� / N(�0; �2�0 )
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the middle expression is integrable over � 2 R (the real line) only when t0 > 0and t1 2 R. Thus, �0 = t1
t0 2 R and �0 = t0 > 0. To compute the posteriorwe just apply the general updating formulas. In this case, the posterior isN(�n; �2=�n) where,

�n = �0 + n; �n = �0�0 + n�xn�0 + nis immediately obtained from the updating formulas for t0 and t1. Notice thatthe posterior parameters �n and �n are the number of observations and themean of the observed data x1; x2; : : : ; xn augmented by �0 extra observationsxn+1; xn+2; : : : ; xn+�0 with mean �0.
Natural Prior for �2j� is ��2(�0; �2

0)When the likelihood of an observation is xj� � N(�; �) we have,
p(xj�) / exp�� 12� (x� �)2 � 12 log �

�
and the natural prior is given with respect to dV = d�=� as,

p(�jt0; t1) / �� t02 exp(� t12� ):In order for this last function to be integrable over the region 0 < � < 1 withrespect to d�=�, it is necessary that t0 > 0 and t1 > 0. This can be seen by�nding the density of � = t1=� to be Gamma(t0=2; 1=2), i.e. a chi-square with�0 = t0 degrees of freedom. We de�ne an inverse chi-square by,
� � ��2(�0; �0)() �0�0� � �2�0and we say that � follows an inverse chi-square with �0 degrees of freedom andscale �0. Also,

� � ��2(�0; �0)() p(�) d� / �� �02 exp���0�02�
� d�� :

The natural family of priors for �2j� is then ��2(�0; �20) with �0�20 = t1 > 0and �0 = t0 > 0.The posterior parameters �n and �2n are obtained from the prior parametersand the observed data as,
�n = �0 + n; and �n�2n = �0�20 + nX

i=1(xi � �)2:
Again, these parameters are the number of observations and the sum of thesquared deviations with respect to � of the observed data x1; : : : ; xn augmentedby �0 extra points xn+1; : : : ; xn+�0 with,

�0X
i=1(xn+i � �)2 = �0 �20
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The Natural Prior for � = (�; �2)We show here that when both the mean and the variance of a Gaussian areunknown the natural prior for the vector (�; �2) is simply the product of thetwo distributions obtained above, i.e.,
(�; �2) � ��2(�0; �20) N(�0; �2=�0)

which is a three parameter family. To see it, just write the likelihood for oneobservation disregarding overall proportionality constants independent of � =(�; v) where we now let v = �2),
p(xj�) / exp�� 12v (x� �)2 � 12 log v

�
/ exp�� 12v�2 + xv �� x22v � 12 log v

�
and use the recipe for the prior: Replace T1 = x 2 R by a parameter t1 2 R,replace T2 = x2 > 0 by a parameter t2 > 0 and multiply the rest of the termsin the exponent by the strength parameter t0. In general the vector of priorparameters t needs to be restricted to the set for which the resulting prior isproper. In this case, the information volume element is,

dV / d�d�2�3 / d� dvv3=2and the scalar probability density with respect to this dV is,
p(�jt)dV / exp��t0��22v + 12 log v

�+ t1v �� t22v
� d�dvv3=2

/ �exp�� t22v � t02 log v� dvv
��exp�� t02v�2 + t1v �

� 1v1=2
� d�

/ ��2(�0; �20) N(�0; �2=�0) d� dv
where we made the substitutions,

�0 = t0; �0 = t1t0 ; �20 = t2t0 :To obtain the posterior parameters �n; �n and �2n we apply the following generalrecipe. Combine the su�cient statistics for the observed data x1; x2; : : : ; xnwhich in this case are the observed mean and variance, i.e. Pn
i=1 xi = n�xn andPn

i=1(xi��xn)2, with the su�cient statistics for the �0 virtual extra observations,xn+1; : : : ; xn+�0 , namely P�0
i=1 xn+i = �0�0 and P�0

i=1(xn+i � �0)2 = �0�20 . Toobtain the updating formulas we simply pool together all the data. The actualobservations with the virtual observations. We then have,
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�n = �0 + n; �n = �0�0 + n�xn�0 + n
as the total number of points and the overall mean. Finally, the new varianceis obtained simply from,

�n�2n = �0+nX
i=1 (xi � �n)2:

This, however needs to be simpli�ed to an expression containing only availabledata since the virtual observations are only given through the value of thesu�cient statistics, �0�0 and �0�20 . Towards this end, we split the sum and addand subtract the sample mean �xn to the �rst term and add and subtract theprior mean �0 to the second term, obtaining,
�n�2n = nX

i=1(xi � �xn + �xn � �n)2 + �0X
i=1(xn+i � �0 + �0 � �n)2

= nX
i=1(xi � �xn)2 + n(�xn � �n)2 + �0�20 + �0(�0 � �n)2

= �0 ��20 + (�0 � �n)2�+ n ��̂2n + (�xn � �n)2�= �0�20 + n�̂2n + n�0�0 + n (�xn � �0)2:
Any of the last two identities can be computed from the values of the sampleand prior means and variances.
Direct Computation of the PosteriorIt is a bit harder to check that the above formulas actually come from a directapplication of bayes rule. For completeness we show here all the steps. We havedata xn = (x1; : : : ; xn) iid N(�; v), the parameter is � = (�; v) and the prioris the natural prior obtained above, i.e., the joint prior distribution of (�; v) isgiven as the marginal distribution v � ��2(�0; �20) multiplied by the conditionaldistribution �jv � N(�0; v=�0) with both densities given with respect to thestandard Lebesgue measure. By bayes theorem and the underlying assumptionswe have that the posterior density, but now with respect to the usual dV = d�dv,is given by,

p(�jxn) / p(xnj�) p(�)
/ v�n=2 exp �12v

nX
i=1(xi � �)2!
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v��0=2�1 exp���0�202v
�

v�1=2 exp���02v (�� �0)2�
adding and subtracting the sample mean inside the summation, expanding thesquares, simplifying, collecting terms, and letting �̂2n to be the sample variance,i.e., n�̂2n =Pn

i=1(xi � �xn)2 we get,
p(�jxn) / v�(�0+n)2 �1 exp��12v (�0�20 + n�̂2n)�

v�1=2 exp��12v [(�0 + n)�2 � 2(�0�0 + n�xn)�]�
exp��12v [�0�20 + n(�xn)2]�

now, the middle line clearly shows that �jv � N(�n; v=�n) but we need tocomplete the square explicitly to be able to identify the marginal distributionof v. We must be careful, not to add extra multiplicative terms containing thevariance v and so what needs to be added to complete the square also needs tobe killed explicitly. That's the reason for the second exponential in the secondline below.
p(�jxn) / v�(�0+n)2 �1 exp��12v (�0�20 + n�̂2n)�

exp��(�0 + n)2v (�� �n)2� exp�+(�0 + n)2v �2n�
exp��12v [�0�20 + n(�xn)2]�

�nally collect all the terms and simplify,
p(�jxn) / v�1=2 exp��(�0 + n)2v (�� �n)2�

v�(�0+n)2 �1 exp��12v (�0�20 + n�̂2n +A)�
where,

(�0 + n)A = (�0 + n)(�0�20 + n(�xn)2)� (�0�0 + n�xn)2= �0n(�20 + (�xn)2 � 2�0�xn)= �0n(�xn � �0)2:Which shows that the marginal distribution of v is indeed ��2(�n; �2n) with theupdating formulas for �n and �2n as previously given.
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The Natural Priors are Entropic
The natural conjugate priors for the exponential family are a special case ofa larger and more general class of priors known as entropic priors. Entropicpriors maximize ignorance and therefore the natural conjugate priors for theexponential family inherit that optimality property. Thus, the priors introducedabove are not only convenient, they are also best in a precise objective sense.
Entropy and Entropic PriorsHere I try to minimize technicalities and full generality in favor of easy accessto the main ideas. Let's start with entropy. It is a number associated to twoprobability distributions for the same data space X . It measures their intrinsicdissimilarity (or separation) as probability distributions. For distributions P;Qwith densities p and q, with respect to a dV in X , de�ne

I(P : Q) = Ep

�log p(x)q(x)
� = Z

X
p(x) log p(x)q(x) dV

as their entropy. The I is for Information and the : is for ratio. This notationmakes I(P : Q) 6= I(Q : P ) explicit. The operator Ep denotes expectationassuming x � p. Even though the de�nition of I(P : Q) uses the densities p; qand a volume element dV , the actual value is independent of all of that!. Thenumber I(P : Q) depends only on the probability distributions P;Q not on thechoice of dV that it is needed for de�ning densities p; q. There is a continuumof measures of separation I�(P : Q) for 0 � � � 1 that �lls up the gap betweenI0 = I(Q : P ) and I1 = I(P : Q). In fact, I(P : Q) is the mean amount ofinformation for discrimination of P from Q when sampling from P ; I(Q : P )same but when sampling from Q instead; I�(Q : P ) sort of when sampling froma mixture in between P and Q. What's important is that these I� are essentiallythe only quantities able to measure the intrinsic separation between probabilitydistributions. In here we'll be considering only the two extremes I0 and I1.
Entropic Priors for the Exponential FamilyWhen the distributions P;Q are on the same exponential family we label themby their parameters � and � and compute,

I(� : �) = kX
j=1(Cj(�)� Cj(�)) �j � log Z(�)Z(�)

straight from the above de�nition. Where,
�j = E� [Tj(x)] = E [Tj(x)j�] = �j(�)

is the expected value of the j-th su�cient statistic when x � p(xj�).
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The 0-entropic family of prior distributions for � with parameters � > 0 and�0 2 � is given by the following scalar densities with respect to the informationvolume in �,
p(�j�; �0) / e��I0(�:�0) / e��I(�0:�)

/ exp
0@ kX

j=1Cj(�) ��j � � logZ(�)
1A

where now �j = �j(�0). This is exactly the density of the natural conju-gate prior for the exponential family with prior parameter t = (�; ��) =�(1; �1; �2; : : : ; �k).
Example1: xj� � N(�; �2)In this case,

I(�0 : �) = � �0�2 � ��2
� �0 � log e�20=2�2e�2=2�2

= �202�2 � �0��2 � �202�2 + �22�2= �202�2 + �22�2 � 2�0�2�2 :Thus,
I(�0 : �) = I(� : �0) = (� � �0)22�2and the 0-entropic prior coincides with the 1-entropic prior. The density w.r.t.d� is,

p(�j�; �0) / exp���(� � �0)22�2
� / N(�0; �2� )

Example2a: 0-prior when xj� � N(�; �)For this case we have, C1 = �1=2�; T1 = (x� �)2 and Z = p2��. Hence,
I(�0 : �) = ��12�0 � �12�

� �0 � 12 log �0�
= �02� � 12 � 12 log �0�and the element of probability for the 0-entropic prior is computed with dV =d�=� as,
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exp (��I(�0 : �)) d�� / ���=2 exp����02�
� d��/ ��2(�; �0) d�

and as expected, coincides with the previously obtained natural conjugate priorfor this case. Recall that the conjugate posterior for this case is, ��2(n+�; �̂2n+�)where we have written �2n with a hat and with index n+� to make explicit thefact that it is the variance associated to the sample extended by the � virtualpoints.
Example2b: 1-prior when xj� � N(�; �)By interchanging � with �0 in the previous formula for the entropy we obtainthe element of probability for the 1-entropic prior,

exp (��I(� : �0)) d�� / ��=2 exp����2�0
� d��/ �2(�; �0) d�

where we say that � � �2(�; �0) when the density (w.r.t. the usual d�) of ��=�0is �2�, i.e. a chi-square with � degrees of freedom.By bayes theorem, the 1-posterior (i.e. the posterior when the 1-prior isused) w.r.t. the usual d� has the form,
p(�jxn; �; �0) / ��(n��)2 �1 exp��n�̂2n2� � �2�0 �

�
where n�̂2n =Pn

i=1(xi � �)2.
The family of GIGsThe above distribution is known as Generalized Inverse Gaussian (or GIG). AGIG(a; b; c) has density proportional to �a�1 exp(�b=� � c�) de�ned for � > 0and it is normalizable whenever a 2 R, b > 0 and c > 0. When, either b = 0or c = 0, but not both zero, the GIG becomes a gamma or an inverse-gamma.The normalization constant involves the BesselK function and it is expensive tocompute. It is easy to see that the GIGs have the following property,

� � GIG(a; b; c) () 1=� � GIG(�a; c; b):
When a > 0, and c > 0 the best second order Gamma(�; �) approximation toa GIG(a; b; c) is obtained by matching the quadratic Taylor polynomials for thelog likelihoods expanded about the mode of the GIG. The values of � and � aregiven by the simple formulas,
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� = a+ 2bm� = �� 1mwhere m is the mode of the GIG(a; b; c) located at,
m = 12c �a� 1 +p(a� 1)2 + 4bc� :

Furthermore, when 2b=m << a and bc=(a � 1)2 << 1 the formulas simplify to� = a and � = c (just expand the square root to �rst order).
The Approximate 1-posterior for N(�; �)Using this (just obtained above) gamma approximation for the GIG, valid forn large (often n > 3 is enough. See the �gures),

p(�jxn; �; �0) / ��2 �n� �; �̂2n���
where we have used the de�nition,

�̂2n�� = nn� ��̂2n:This shows that the 1-posterior is just like the 0-posterior but with n � �points instead of n + � points. I �nd this remarkable. It is the �rst indicationthat the 1-prior is indeed less informative than the conjugate 0-prior. This alsoshows that, in this case, the number of virtual data points acts as a negativenumber!. Here is a possible rationalization for this paradoxical result. The1-prior takes into account the inherent higher uncertainty in the prior datarelative to the actual data. In fact, as it is usually the case, if the value of �0 isestimated from the observed data, it is only natural that the number of degreesof freedom should be reduced due to the double use of the data. This is notunlike the reduction of degrees of freedom for the likelihood ratio statistic whenfree parameters need to be estimated from the data.In �gure1 the actual 1-posteriors for 1=� are shown for sample sizes of 1; 2; 5and 10 points. Notice that the curves very quickly become indistinguishablefrom a gamma and eventually a gaussian distribution. The Laplace-gamma andnaive gamma approximations are shown in �gure2 for the case n = 1 and in�gure3 for the case n = 3. With only one data point the approximations arenot good but with just n = 3 both approximations become very similar to theactual posterior.
Example3: xj� � N(�; v) with � = (�; v)Now,
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Figure 3: GIG when n=3 (black); Laplace-Gamma approximation (red);Gamma approximation (blue)
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p(xj�) / exp��v x� x22v � 12 log ve�2=v�
from where we compute,

I(�0 : �) = ��0v0 � �v
� �0 + ��12v0 � �12v

� (v0 + �20)� 12 log v0e�
20=v0ve�2=v

= �22v + �202v � �0�v + v02v � 12 � 12 log v0v= (�� �0)22v +� v02v � 12 � 12 log v0v
�

and the 0-prior probability element coincides with what was obtained for thenatural conjugate prior,
exp (��I(�0 : �)) d�dvv3=2 / ��2(�; v0) N(�0; v� ) d�dv:On the other hand, the 1-prior, which is non-conjugate in this case, can beeasily computed by interchanging �0 with � in the expression for the entropy.We have,
exp (��I(� : �0)) d�dvv3=2 / �2(�; v0) N(�0; v� ) d�dv:The 1-posterior can be computed from bayes theorem, along the lines of theexplicit calculation for the 0-posterior. We obtain,

p(�; vjxn)d�dvv3=2 / �v�1=2 exp��(�+ n)(�� �n)22v
� d��

v�(n��)=2�1 exp��n2v [�̂2n + ��+ n (�xn � �0)2]� �v2v0
� dv

/ �N ��n; v�+ n
� ��2 �n� �; �̂2n���� d�dv

where the last expression is valid for n large and � small as before.
The Marginal 1-Posterior for �From the last approximation we can integrate over the variance v to obtain themarginal posterior distribution for �,
p(�jxn) = Z 1

0 p(�; vjxn) dvv3=2
17



/ Z 1

0 v�(n��+1)=2�1 exp��12v �(n� �)�̂2n�� + (n+ �)(�� �n)2�� dv
/ "1 + n+ �n� �

��� �n�̂n��
�2#�(n��+12 )

from where we obtain that for n large and � small,
�� �n�̂n��=pn+ �

����xn � tn��
i.e., a student-t distribution with n�� degrees of freedom. Thus, the � virtualprior observations supporting the 1-prior act as anti-data, annihilating an equalnumber of actual observations and reducing the degrees of freedom to n � �.The 1-posterior con�dence intervals for � are larger than the corresponding0-posterior intervals.
The Actions for Ignorance
Alas the 0-entropic, the 1-entropic prior is in general non conjugate and theinference usually needs to be done by Monte-Carlo. Nevertheless, the 1-priorsoptimize a notion of ignorance that is remarkably simple (see below).The 1-prior is the one (and only one) � that makes it most di�cult to discrim-inate the joint distribution of (x�; �) (i.e., �(�)p(x1j�)p(x2j�) : : : p(x�j�) � p��)from the factorized model p(x�j�0)!(�) � p�0! with !(�) the uniform (normal-ized volume) on �. In other words, the 1-prior is,

�� = argmin� I(p�� : p�0!)
The expression for this entropy simpli�es to a quantity with an easy inter-pretation. Compute as follows:

I(p�� : p�0!) = Z p�(xj�)�(�) log p�(xj�)�(�)p�0 (x)!(�) dx�d�
= Z p�(xj�)�(�) �log p�(xj�)p�0 (x) + log �(�)!(�)

� dx�d�
= Z �(�)�I(� : �0)d� + Z �(�) log �(�)!(�)d�
= � Z �(�)I(� : �0)d� + Z �(�) log �(�)!(�)d�:

Thus, the 1-entropic prior ��(�) is the result of a compromise between massconcentration about �0 so that I(� : �0) remains small and uniform spreadallover the model so that I(� : !), which is the second term of the sum above,is also small. To obtain the solution �� that minimizes this last expression for
18



the entropy, among all proper priors with R � = 1 is an easy exercise in thecalculus of variations. However, for our simple case that involves no derivativesof �, the general Euler-Lagrange equations are an overkill. The necessary andsu�cient conditions for the optimal can be readily justi�ed if we replace thein�nite dimensional vector � by a large but �nite dimensional approximation(�1; �2; : : : ; �N ) of piecewise constant values on a discretization of � intoN littlevolumes. Thus, we only need to add a Lagrange multiplier for the normalizationconstraint and set all the partial derivatives equal to zero and obtain the usualEuler-Lagrange equations in the limit as N !1. Therefore, to minimize R Ld�with,
L = ��I + � log �! + ��

we need, @L@� = �I + log �! + 1 + � = 0
from which we obtain the 1-prior,��! = C e��I
with C chosen to satisfy the constraint R �� = 1.The split of the original form of the entropy into the two terms � < I(: : �0) >+I(� : !) suggests several generalizations. First of all, the parameter � > 0does not need to be an integer anymore. Secondly, the two I's can be replacedby I� with two di�erent values for � obtaining the general three-parameter classof invariant actions for ignorance. All the ignorance priors obtained as theminimizers of these actions share a common geometric interpretation illustratedin �gure [4]. In particular, the 0-priors minimize,

� Z �(�)I(�0 : �)d� + Z �(�) log �(�)!(�)d�
with solution identical in form to the 1-priors but with I(�0 : �) in the exponentinstead of I(� : �0). Thus, the natural conjugate priors for the exponentialfamily are most ignorant in this precise objective sense: the 0-priors are theonly proper minimizers of the action above.
Virtual Data and Anti-Data
The 0-priors and the 1-priors are in general quite di�erent. However, we expectthe posterior distributions computed from these priors to get closer to one an-other as more data becomes available. In this section we show that the conceptof \anti-data" associated to 1-priors, discovered for the special case of the esti-mation of the mean and variance of a gaussian distribution, holds in general inthe exponential family where the log likelihood for n observations is,
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Figure 4: The model M = fpg, the true distribution t, the projection of thetrue onto the model is q. Priors are random choices of p 2M
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log p(xnj�) = exp( kX
j=1Cj(�) nX

i=1 Tj(xi))� n logZ(�) + (other)
where the \(other)" terms do not involve �. For the exponential family the0-prior �0, and 1-prior �1, are such that,

log �0(�j�; �0) = � kX
j=1 �j(�0)Cj(�)� � logZ(�) + (other);

log �1(�j�; �0) = �� kX
j=1[Cj(�)� Cj(�0)]�j(�) + � logZ(�) + (other):

Thus, for the 0-posterior
log �0(�jxn; �; �0) = kX

j=1[��j(�0) +
nX
i=1 Tj(xi)]Cj(�)� (n+ �) logZ(�) + (other)

and for the 1-posterior,
log �1(�jxn; �; �0) = kX

j=1(��[Cj(�)�Cj(�0)]�j(�)+Cj(�) nX
i=1 Tj(xi))�(n��) logZ(�)+(other):

We notice that,
log �1(�jxn; �; �0) = log �0(�jxn;��; �0)�� kX

j=1[Cj(�)�Cj(�0)][�j(�)��j(�0)]+(other)
which shows that in the limit of weak prior information (i.e., as � ! 0) this1-posterior approaches the 0-posterior but with �� instead of �.
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