
Wishart Distributions
and Inverse-Wishart Sampling

Stanley Sawyer — Washington University — Vs. April 30, 2007

1. Introduction. The Wishart distribution W (Σ, d, n) is a probability
distribution of random nonnegative-definite d × d matrices that is used to
model random covariance matrices. The parameter n is the number of de-
grees of freedom, and Σ is a nonnegative-definite symmetric d × d matrix
that is called the scale matrix . By definition

W ≈ W (Σ, d, n) ≈
n∑

i=1

XiX
′
i, Xi ≈ N(0, Σ) (1.1)

so that W ≈ W (Σ, d, n) is the distribution of a sum of n rank-one matrices
defined by independent normal Xi ∈ Rd with E(X) = 0 and Cov(X) = Σ.
In particular

E(W ) = nE(XiX
′
i) = n Cov(Xi) = nΣ

(See multivar.tex for more details.) In general, any X ≈ N(µ, Σ) can be
represented

X = µ + AZ, Z ≈ N(0, Id), so that
Σ = Cov(X) = A Cov(Z)A′ = AA′ (1.2)

The easiest way to find A in terms of Σ is the LU-decomposition, which finds
a unique lower diagonal matrix A with Aii ≥ 0 such that AA′ = Σ. Then by
(1.1) and (1.2) with µ = 0

W (Σ, d, n) ≈
n∑

i=1

(AZi)(AZi)′ ≈ A

( n∑

i=1

ZiZ
′
i

)
A′, Zi ≈ N(0, Id)

≈ AW (d, n) A′ where W (d, n) = W (Id, d, n) (1.3)

In particular, W (Σ, d, n) can be easily represented in terms of W (d, n) =
W (Id, d, n).

Assume in the following that n > d and Σ is invertible. Then the density
of the random d× d matrix W in (1.1) can be written

f(w, n, Σ) =
|w|(n−d−1)/2 exp

(−(1/2) tr(wΣ−1)
)

2dn/2πd(d−1)/4|Σ|n/2
∏d

i=1 Γ
(
(n + 1− i)/2

) (1.4)

where |w| = det(w), |Σ| = det(Σ), and f(w, n, Σ) = 0 unless w is symmetric
and positive definite (Anderson 2003, Section 7.2, page 252).
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2. The Inverse-Wishart Conjugate Prior. An important use of the
Wishart distribution is as a conjugate prior for multivariate normal sampling.
This leads to a d-dimensional analog of the inverse-gamma-normal conjugate
prior for normal sampling in one dimension.

The likelihood function of n independent observations Xi ≈ N(µ, Σ) for
a d× d positive definite matrix Σ is

L(µ, Σ, X) =
n∏

i=1

1√
(2π)d|Σ| exp

(−(1/2)(Xi − µ)′Σ−1(Xi − µ)
)

=
1

(2π)nd/2|Σ|n/2
exp

(
−(1/2)

n∑

i=1

(Xi − µ)′Σ−1(Xi − µ)

)
(2.1)

The sum in (2.1) can be written

n∑

i=1

d∑
a=1

d∑

b=1

(Xia − µa)(Σ−1)ab(Xib − µb)

=
d∑

a=1

d∑

b=1

(Σ−1)ab

n∑

i=1

(Xia − µa)(Xib − µb)

=
d∑

a=1

d∑

b=1

(Σ−1)abQ(µ)ab = tr
(
Σ−1Q(µ)

)
(2.2)

where

Q(µ) =
n∑

i=1

(Xi − µ)(Xi − µ)′

=
n∑

i=1

(Xi −X)(Xi −X)′ + n(X − µ)(X − µ)′

= Q0 + nνν′, ν = X − µ (2.3)

Substituting (2.3) into (2.2) and (2.1) leads to the expression

L(µ, Σ, X) =
exp

(−(1/2) tr
(
Q0Σ−1

))
exp

(−(1/2)nν′Σ−1ν
)

(2π)nd/2|Σ|n/2

= Cnd |Σ−1|(n−1)/2 exp
(−(1/2) tr

(
Q0Σ−1

))

× 1√
2π|Σ| exp

(−(1/2)n(µ−X)′Σ−1(µ−X)
)

(2.4)
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where

Q0 =
n∑

i=1

(Xi −X)(Xi −X)′ (2.5)

Note that the integral
∫

L(µ, Σ, X)dµ in (2.4) is the same as the Wishart
density (1.4) with Σ−1 replaced by w, Q0 in (2.4) replaced by Σ−1 in (1.4)
so that Q0Σ−1 is replaced by wΣ−1, and n replaced by n−d, within multi-
plicative constants that depend only on n, d, and X.

The similarity in forms between (1.4) and the first factor in (2.4) suggests
that we might be able to sample from the density L(µ, Σ, X) in (2.4) by
generating random variables by

(i) W ≈ W (d, n,Q−1
0 ) (2.6)

(ii) Σ = W−1

(iii) µ = X + (A/
√

n)Z, Σ = AA′, Z ≈ N(0, Id)

One subtlety is that the density of Σ in (2.6) will not be f(n,Q−1
0 , Σ−1)

for f(n, S, W ) in (1.4), or at least will not be this density with respect to
Lebesgue measure dΣ in Rd2

. In general, for any function φ(y) ≥ 0,

E
(
φ(Σ)

)
= E

(
φ(W−1)

)
=

∫
φ(y−1)f(n,Q−1

0 , y) dy

=
∫

φ(y)f(n,Q−1
0 , y−1) d(y−1)

=
∫

φ(y)f(n,Q−1
0 , y−1)Jy(y−1) dy

where Jy(y−1) is the absolute value of the Jacobian matrix of y → y−1.
Among all invertible matrices, a space of dimension d2, the Jacobian

Jy(y−1) = |y|−2d (see Theorem 4.1 below). However, f(w, n, Σ) in (1.4) is de-
rived using the “Bartlett decomposition” (see Section 3 below) to parametrize
positive definite symmetric matrices by a flat space of dimension d(d + 1)/2.
Anderson (2003) states Jy(y−1) = |y|−d−1 for the mapping y → y−1 re-
stricted to symmetric matrices, but refers only to a theorem in his Appendix
(Theorem A.4.6) that has only the d2-dimensional result.

In any event, substituting Jy(y−1) = |y|−d−1 above leads to

E
(
φ(Σ)

)
=

∫
φ(y)|y|−d−1f(n,Q−1

0 , y−1) dy

Thus by (1.4) the joint density of (µ, Σ) generated by (2.6) is

g(µ,Σ) = C|Σ|−(n+d+1)/2 exp
(−(1/2) tr(Σ−1Q0)

)

× 1√
2π|Σ| exp

(−(1/2)n(µ−X)′Σ−1(µ−X)
)

(2.7)
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The first factor in (2.7) is called the inverse-Wishart distribution by Anderson
(2003, Theorem 7.7.1).

Gelman et al. (2003) define the four-parameter inverse-Wishart-normal
density for (µ, Σ) as the density generated by

Σ−1 ≈ W (ν0, d, Λ−1
0 ) (2.8)

µ | Σ ≈ N(µ0, Σ/κ0)

where κ0, ν0 are positive numbers, µ0 is a real number, and Λ0 is a d × d
positive definite matrix. They also state the density

p(µ,Σ) = |Σ|−((ν0+d+1)/2) exp
(−(1/2) tr(Λ0Σ−1)

)
(2.9)

× |Σ|−1/2 exp
(−(κ0/2)(µ− µ0)′Σ−1(µ− µ0)

)

for (2.8), which is the same as (2.7) with ν0 = n, Λ0 = Q0, κ0 = n, and
µ0 = X.

Gelman et al. (2003) say that updating (2.8) or (2.9) with respect to
an independent multivariate normal sample X1, X2, . . . , Xn with distribution
N(µ, Σ) preserves the distribution with µ0 etc. replaced by

µn =
n

κ0 + n
X +

κ0µ0

κ0 + n
(2.10)

κn = κ0 + n

νn = ν0 + n

Λn = Λ0 + Q0 +
κ0n

κ0 + n
(X − µ0)(X − µ0)′

for Q0 in (2.5). Since ν0 appears in (2.10) only in the additive update
νn = ν0 + n, the initial power of Σ in the density does not matter.

Gelman et al. also discuss using a Jeffrey’s prior

π0(µ, Σ) = C/|Σ|(d+1)/2

This would amount to increasing n by d + 1 in (2.6) or (2.7) or ν0 by d + 1
in (2.9). This would at least guarantee that the random matrices W in (2.6)
were always invertible.

3. A Fast Way to Generate Wishart-Distributed Random Vari-
ables. Suppose that we want to estimate parameters in a model with in-
dependent multivariate normal variables. Bayesian methods based on Gibbs
sampling using (2.4)–(2.4) and (2.6) or (2.8) depend on being able to simulate
Wishart-distributed random matrices in an efficient manner.
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If we simulate W ≈ W (Σ, d, n) using the basic definition (1.1)–(1.3),
then we have to generate nd independent standard normal random variables
and use of order nd2 operations for each simulated value of W . Odell and
Feiveson (1966) (referenced in Liu, 2001) developed a way to simulate W in
O(d2) operations, which is a considerable improvement in time if n À d.

Theorem 3.1 (Odell and Feiveson, 1966). Suppose that Vi (1 ≤ i ≤ d)
are independent random variables where Vi has a chi-square distribution with
n− i+1 degrees of freedom (so that n−d+1 ≤ n− i+1 ≤ n). Suppose that
Nij are independent normal random variables with mean zero and variance
one for 1 ≤ i < j ≤ d, also independent of the Vi. Define random variables
bij for 1 ≤ i, j ≤ d by bji = bij for 1 ≤ i < j ≤ d and

bii = Vi +
i−1∑
r=1

N2
ri, 1 ≤ i ≤ d (3.1)

bij = Nij

√
Vi +

i−1∑
r=1

NriNrj , i < j ≤ d

Then B = {bij} has a Wishart distribution W (d, n) = W (Id, d, n).

Remarks. (1) We assume that empty sums in (3.1) are zero, so that (3.1)
implies b11 = V1 and b1j = N1j

√
V1. Note that each diagonal entry bii is

individually chi-square with n degrees of freedom.
Odell and Feiveson state the theorem with n − 1 in place of n, so that

Vi is chi-squared with n − i degrees of freedom (from n − d to n − 1) and
the conclusion is that B ≈ W (n − 1, d). They suggest that their algorithm
was used for simulation studies of regression filters for estimating spacecraft
trajectories.

The random variables bij in (3.1) can be defined in a single double loop.
If Vi is defined in an outer loop just before bii is defined, and Nij in an inner
loop just before bij is defined, then, by induction on i, the values Nri, Nrj

in (3.1) have been previously defined. In particular, B in (3.1) can be defined
in a single double loop without requiring a preliminary double loop to define
Vi and Nij , although storage would have to be allocated for previous values
of Nij .

(2) Define a random matrix T by

Tij = Nji (1 ≤ j < i ≤ d) (3.2)

Tii =
√

Vi , Tij = 0 (i < j ≤ d)

Then T is upper diagonal and (3.1) is equivalent to
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bij =
min(i,j)∑

r=1

TirTjr or

B = TT ′ (B = {bij}) (3.3)

Note that Tir 6= 0 only for r ≤ i means that the only nonzero terms are on
the diagonal or above the diagonal, since (i, r) = (1, 1) is the upper left-hand
corner of a matrix as usually written.

In general, the relation B = TT ′ gives a one-one mapping between
positive definite matrices B and upper diagonal matrices T with positive el-
ements on the diagonal. Anderson (2003, Chapter 7) uses this fact to derive
the formula (1.4) above for the Wishart density with a d(d+1)/2-dimensional
parametrization of symmetric matrices. The proof of Theorem 3.1 in Ander-
son is essentially the same as the following (which follows Odell and Feive-
son) except that Anderson has slightly more cryptic notation. Anderson calls
B = TT ′ the Bartlett decomposition after Bartlett (1939), although Ander-
son also attributes the term rectangular coordinates for T to Mahalanobis,
Bose, and Roy (1937).

The Bartlett decomposition (3.2)-(3.3) also implies the following result,
which can be used to give the exact distribution of the sample generalized
variance.

Corollary 3.1. If W ≈ W (Σ, d, n) as in (1.1), then the random determi-
nant

|W | ≈ |Σ|
d−1∏

i=0

Vi, (3.4)

where Vi are independent chi-square with Vi ≈ χ2
n−i.

Proof of Corollary 3.1. W ≈ W (Σ, d, n) ≈ ABA′ by (1.3) above
where A is deterministic, AA′ = Σ, and B ≈ W (d, n). Thus |W | = |ABA′| =
|B||AA′| = |Σ||B|. By (3.3), |B| = |TT ′| = |T |2 =

∏d
i=1 t2ii =

∏d
i=1 Vi, so

that (3.4) follows from Theorem 3.1

Proof of Theorem 3.1. As a first step, we represent the matrix entries of
the random variable B ≈ W (d, n) as

bab =
n∑

i=1

ZiaZib, Zia independent N(0, 1)

This can be written as the inner product bab = (Za, Zb) if the column vec-
tors Za = {Zia} are viewed as random vectors in Rn. The Gram-Schmidt
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orthogonalization of the vectors {Za} is

Ya = Za −
a−1∑

b=1

Yb (Za, Yb)/(Yb, Yb), 1 ≤ a ≤ d (3.5)

or in terms of the individual components

Yia = Zia −
a−1∑

b=1

Yib

( n∑

j=1

ZjbYjb

) / n∑

j=1

Y 2
jb

By induction on a, (Yr, Ya) = 0 for r < a ≤ d. Expanding (Ya, Ya) in (3.5)
into four terms,

(Ya, Ya) = (Za, Za) −
a−1∑

b=1

(Za, Yb)2/(Yb, Yb) (3.6)

=
n∑

i=1

n∑

j=1

Zia

(
δij −

a−1∑

b=1

YibYjb/(Yb, Yb)

)
Zja

=
n∑

i=1

n∑

j=1

Zia(Ra)ijZja (3.7)

where Ra and Qb are the n× n random matrices

(Ra)ij = δij −
a−1∑

b=1

(Qb)ij , (Qb)ij = YibYjb/(Yb, Yb) (3.8)

Since {Ya} are orthogonal for 1 ≤ a ≤ d, the Qb in (3.8) are n× n rank-one
random matrices with

Qb = Q′b = Q2
b , QbQc = 0, 1 ≤ c < b ≤ d

Thus Qb are random orthogonal projection matrices, also orthogonal to one
another. For the same reason, Ra in (3.8) is a random orthogonal projection
matrix with rank n− (a− 1) = n + 1− a in Rn.

The matrices Ra in (3.7)–(3.8) are random, but by induction depend
on Zjb only for 1 ≤ b < a ≤ d. Conditional on {Zjb} for b < a, Ra is
a deterministic orthogonal projection matrix of rank n + 1 − a. Thus the
quadratic form (Ya, Ya) = (Za, RaZa) in (3.7) has a chi-squared distribution
with n + 1− a degrees of freedom. Since this distribution is the same for
all values of {Zjb} for b < a, it follows that the absolute distribution of
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Va = (Za, RaZa) is chi-square with n + 1− a degrees of freedom and that it
is independent of Zjb for b < a.

It follows from the same argument that (Za, QbZa) = (Za, Yb)2/(Yb, Yb)
for b < a are independent chi-square random variables with one degree of
freedom, which are also independent of Va = (Za, RaZa). Thus we can define
independent standard normal random variables

Nba = ±
√

(Za, QbZa) = ±(Za, Yb)/
√

(Yb, Yb), 1 ≤ b < a ≤ d (3.9)

which are also independent of Va. Similarly, the families {Va, Nba} are inde-
pendent for different a since {Va, Nba} have a fixed distribution conditional
on {Zjc} for c < a. It only remains to relate the coefficients

bab =
n∑

i=1

ZiaZib = (Za, Zb) ≈ W (d, n)

to Va and Nbc. First, by (3.6) and (3.9)

baa = (Za, Za) = (Ya, Ya) +
a−1∑

b=1

(Za, Yb)2/(Yb, Yb) = Va +
a−1∑

b=1

N2
ba

This proves the first part of (3.1). By (3.5)

bba = (Za, Zb)

=

(
Ya +

a−1∑
c=1

Yc(Za, Yc)/(Yc, Yc), Yb +
b−1∑
e=1

Ye(Zb, Ye)/(Ye, Ye)

)

Since Ya on the left side of the large inner product is orthogonal to both
terms on the right side for b < a,

bba = (Za, Yb) +
b−1∑
e=1

(Za, Ye)(Zb, Ye)/(Ye, Ye) = Nba

√
Vb +

b−1∑
c=1

NcaNcb

since (Za, Yb) = ±Nba

√
(Yb, Yb) = ±Nba

√
Vb for b < a by (3.9). This com-

pletes the proof of (3.1).

4. The Jacobian of the Inverse of a Matrix. The purpose of this
section is to prove



Wishart and Inverse-Wishart Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

Theorem 4.1. Let A = {aik} be an invertible d× d matrix, which we can
view as a vector A ∈ Rd2

by the encoding

AI = aik, I = id + k where 0 ≤ i, k < d, 0 ≤ I < d2

Then the mapping A → A−1 has the Jacobian matrix

∂

∂A
(A−1) = − (A′)−1 ⊗A−1 (4.1)

where ⊗ means a tensor product (see below). Moreover, if |A| denotes the
determinant in either Rd or Rd2

,
∣∣∣∣

∂

∂A
(A−1)

∣∣∣∣ = − |A|−2d (4.2)

Remarks. (1) The Jacobian matrix on the left-hand side of (4.1) is d2×d2,
while A, A′, and A−1 are d× d.

(2) In general, if A = {aij} is dA × dA and B = {bk`} is a dB × dB

matrix, the tensor product A⊗B is the dAdB × dAdB matrix with entries

(A⊗B)IJ = aijbk`, I = idB + k, J = jdB + ` (4.3)

In particular, if A is 2 × 2 and B is 5 × 5, then A ⊗ B is 10 × 10. The
encoding (4.3) of pairs (i, k) into I (where i, j are “slow” indices and k, ` are
“fast” indices) is equivalent to the block matrix form

A⊗B =
(

a11B a12B
a21B a22B

)

Equation (4.2) in Theorem 4.1 follows from the identity

|A⊗B| = |A|dB |B|dA (4.4)

which is proven in Theorem 4.2 below.

(3) The identity (4.4) (Theorem 4.2) is Theorem A.4.5 in the Appendix
of Anderson (2003). Theorem 4.1 is Theorem A.4.6. An analog of Theo-
rem 4.1 for symmetric matrices (Jy(y−1) = |y|−d−1, since they inhabit a
space of lower dimension; Anderson 2003, p272) is used to derive the inverse
Wishart distribution and referred to Theorem A.4.6, which does not cover
that case.



Wishart and Inverse-Wishart Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Proof of Theorem 4.1. Since A−1A = Id,

d∑

b=1

(A−1)jbAbc = δjc, 1 ≤ j, c ≤ d

Then

d∑

b=1

(
∂

∂Aik
(A−1)jb

)
Abc = −

d∑

b=1

(A−1)jb
∂

∂Aik
Abc

= −
d∑

b=1

(A−1)jbδibδkc = − (A−1)jiδkc (4.5)

If we postmultiply both sides of (4.5) by (A−1)c` and sum over c, we obtain

∂

∂Aik
(A−1)j` = −(A−1)ji(A−1)k`

The encoding (4.3) then implies

∂

∂AI
(A−1)J = − (

(A′)−1 ⊗A−1
)
IJ

which implies (4.1).

Theorem 4.2. Let A = {aij} be a dA × dA positive-definite matrix and
B = {bk`} a dB × dB positive definite matrix. Define A ⊗ B, I, and J as
in (4.3). Then

|A⊗B| = |A|dB |B|dA (4.6)

Proof. The proof uses the fact that a positive definite matrix can be written
as A = LU where L is upper diagonal and U is lower diagonal. We begin
with four lemmas, some of whose proofs we leave as exercises.

Lemma 1. If A = {aij} is upper or lower diagonal, then |A| is the product
of its diagonal elements. That is, |A| = ∏d

i=1 aii.

Lemma 2. If A and B are two upper diagonal matrices, then AB is also
upper diagonal.

Lemma 3. If A and B are two upper diagonal matrices, then A ⊗ B is
upper diagonal.

Proof. While Lemma 2 assumes that A and B are of the same dimension,
Lemma 3 does not. Lemma 3 depends on how the indices I = (i, k) are
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encoded, which we assume is as in (4.3). Thus (A ⊗ B)IJ = aikbk` for
I = idB + k and J = jdB + `. We need to show that (A⊗ B)IJ = 0 unless
J ≤ I. If J > I, then either j > i or j = i and ` > k. If the first case aij = 0
and bk` = 0 in the second case.

Lemma 4. If A and B and dA × dA matrices and C and D are dC × dC ,
then

(A⊗ C)(B ⊗D) = AB ⊗ CD (4.7)

Proof. If I = idC + k, J = jdC + `, and M = mdC + n as before,

(
(A⊗ C)(B ⊗D)

)
IJ

=
dAdC−1∑

M=0

(A⊗ C)IM (B ⊗D)MJ

=
dA−1∑
m=0

dC−1∑
n=0

aimcknbmjdn` =
dA−1∑
m=0

aimbmj

dC−1∑
n=0

ckndn`

= (AB)ij(CD)k` = (AB ⊗ CD)IJ

Proof of Theorem 4.2. Write A = LAUA and B = LBUB where LA, LB

are upper diagonal and UA, UB are lower diagonal. Then by Lemma 4

A⊗B = LAUA ⊗ LBUB = (LA ⊗ LB)(UA ⊗ UB)

and

|A⊗B| = |(LA ⊗ LB)(UA ⊗ UB)| = |LA ⊗ LB | |UA ⊗ UB | (4.8)

Since LA ⊗ LB is upper diagonal by Lemma 3, then by Lemma 1

|LA ⊗ LB | =
dAdB−1∏

I=0

(LA ⊗ LB)II =
dA−1∏

i=0

dB−1∏

j=0

(ciidjj)

if LA = {cik} and LB = {dj`}. Then

|LA ⊗ LB | =
dA−1∏

i=0

(
cdB
ii

dB−1∏

j=0

djj

)
=

(dA−1∏

i=0

cii

)dB
(dB−1∏

j=0

djj

)dA

= |LA|dB |LB |dA

By the same argument |UA ⊗ UB | = |UA|dB |UB |dA , and |A| = |LAUA| =
|LA||UA| and |B| = |LBUB | = |LB ||UB |. Putting this together with (4.8)
implies (4.6). This completes the proof of the theorem.
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