
Logistic regression (with R)

Christopher Manning

4 November 2007

1 Theory

We can transform the output of a linear regression to be suitable for probabilities by using a logit link
function on the lhs as follows:

logit p = log o = log
p

1 − p
= β0 + β1x1 + β2x2 + · · · + βkxk (1)

The odds can vary on a scale of (0,∞), so the log odds can vary on the scale of (−∞,∞) – precisely what
we get from the rhs of the linear model. For a real-valued explanatory variable xi, the intuition here is
that a unit additive change in the value of the variable should change the odds by a constant multiplicative
amount.

Exponentiating, this is equivalent to:1

elogit p = eβ0+β1x1+β2x2+···+βkxk (2)

o =
p

1 − p
= eβ0eβ1x1eβ2x2 · · · eβkxk (3)

The inverse of the logit function is the logistic function. If logit(π) = z, then

π =
ez

1 + ez

The logistic function will map any value of the right hand side (z) to a proportion value between 0 and 1,
as shown in figure 1.

Note a common case with categorical data: If our explanatory variables xi are all binary, then for the
ones that are false (0), we get e0 = 1 and the term disappears. Similarly, if xi = 1, eβixi = eβi . So we are
left with terms for only the xi that are true (1). For instance, if x3, x4, x7 = 1 only, we have:

logit p = β0 + β3 + β4 + β7 (4)

o = eβ0eβ3eβ4eβ7 (5)

The intuition here is that if I know that a certain fact is true of a data point, then that will produce a
constant change in the odds of the outcome (“If he’s European, that doubles the odds that he smokes”).

Let L = L(D; B) be the likelihood of the data D given the model, where B = {β0, . . . , βk} are the
parameters of the model. The parameters are estimated by the principle of maximum likelihood. Technical
point: there is no error term in a logistic regression, unlike in linear regressions.

1Note that we can convert freely between a probability p and odds o for an event versus its complement:

o =
p

1 − p
p =

o

o + 1

1

Logistic function

-6 -4 -2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1: The logistic function

2 Basic R logistic regression models

We will illustrate with the Cedegren dataset on the website.

cedegren <- read.table("cedegren.txt", header=T)

You need to create a two-column matrix of success/failure counts for your response variable. You cannot

just use percentages. (You can give percentages but then weight them by a count of success + failures.)

attach(cedegren)

ced.del <- cbind(sDel, sNoDel)

Make the logistic regression model. The shorter second form is equivalent to the first, but don’t omit
specifying the family.

ced.logr <- glm(ced.del ~ cat + follows + factor(class), family=binomial("logit"))

ced.logr <- glm(ced.del ~ cat + follows + factor(class), family=binomial)

The output in more and less detail:

> ced.logr

Call: glm(formula = ced.del ~ cat + follows + factor(class), family = binomial("logit"))

Coefficients:

(Intercept) catd catm catn catv followsP

-1.3183 -0.1693 0.1786 0.6667 -0.7675 0.9525

followsV factor(class)2 factor(class)3 factor(class)4

0.5341 1.2704 1.0480 1.3742

Degrees of Freedom: 51 Total (i.e. Null); 42 Residual

Null Deviance: 958.7

Residual Deviance: 198.6 AIC: 446.1

> summary(ced.logr)

Call:

glm(formula = ced.del ~ cat + follows + factor(class), family = binomial("logit"))

Deviance Residuals:

Min 1Q Median 3Q Max

2

-3.24384 -1.34325 0.04954 1.01488 6.40094

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.31827 0.12221 -10.787 < 2e-16

catd -0.16931 0.10032 -1.688 0.091459

catm 0.17858 0.08952 1.995 0.046053

catn 0.66672 0.09651 6.908 4.91e-12

catv -0.76754 0.21844 -3.514 0.000442

followsP 0.95255 0.07400 12.872 < 2e-16

followsV 0.53408 0.05660 9.436 < 2e-16

factor(class)2 1.27045 0.10320 12.310 < 2e-16

factor(class)3 1.04805 0.10355 10.122 < 2e-16

factor(class)4 1.37425 0.10155 13.532 < 2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 958.66 on 51 degrees of freedom

Residual deviance: 198.63 on 42 degrees of freedom

AIC: 446.10

Number of Fisher Scoring iterations: 4

Residual deviance is the difference in G2 = −2 logL between a maximal model that has a separate
parameter for each cell in the model and the built model. Changes in the deviance (the difference in the
quantity −2 logL) for two models which can be nested in a reduction will be approximately χ2-distributed
with dof equal to the change in the number of estimated parameters. Thus the difference in deviances can be
tested against the χ2 distribution for significance. The same concerns about this approximation being valid
only for reasonably sized expected counts (as with contingency tables and multinomials in Suppes (1970))
still apply here, but we (and most people) ignore this caution and use the statistic as a rough indicator when
exploring to find good models.

We’re usually mainly interested in the relative goodness of models, but nevertheless, the high residual de-
viance shows that the model cannot be accepted to have been likely to generate the data (pchisq(198.63, 42)≈
1). However, it certainly fits the data better than the null model (which means that a fixed mean probability
of deletion is used for all cells): pchisq(958.66-198.63, 9)≈ 1.

What can we see from the parameters of this model? catd and catm have different effects, but both are
not very clearly significantly different from the effect of cata (the default value). All following environments
seem distinctive. For class, all of class 2–4 seem to have somewhat similar effects, and we might model class
as a two way distinction. It seems like we cannot profitably drop a whole factor, but we can test that with
the anova function to give an analysis of deviance table, or the drop1 function to try dropping each factor:

> anova(ced.logr, test="Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: ced.del

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)

NULL 51 958.66

cat 4 314.88 47 643.79 6.690e-67

3

follows 2 228.86 45 414.93 2.011e-50

factor(class) 3 216.30 42 198.63 1.266e-46

> drop1(ced.logr, test="Chisq")

Single term deletions

Model:

ced.del ~ cat + follows + factor(class)

Df Deviance AIC LRT Pr(Chi)

<none> 198.63 446.10

cat 4 368.76 608.23 170.13 < 2.2e-16

follows 2 424.53 668.00 225.91 < 2.2e-16

factor(class) 3 414.93 656.39 216.30 < 2.2e-16

The ANOVA test tries adding the factors only in the order given in the model formula (left to right). If
things are close, you should try rearranging the model formula ordering, or using drop1, but given the huge
drops in deviance, here, it seems clearly unnecessary.

Let’s now try a couple of models by collapsing particular levels, based on our observations above.

> glm(ced.del ~ cat + follows + I(class == 1), family=binomial("logit"))

Call: glm(formula = ced.del ~ cat + follows + I(class == 1), family = binomial("logit"))

Coefficients:

(Intercept) catd catm catn catv

-0.0757 -0.1614 0.1876 0.6710 -0.7508

followsP followsV I(class == 1)TRUE

0.9509 0.5195 -1.2452

Degrees of Freedom: 51 Total (i.e. Null); 44 Residual

Null Deviance: 958.7

Residual Deviance: 232.7 AIC: 476.2

> pchisq(232.72-198.63, 2)

[1] 1

The above model isn’t as good. We could just collapse class 2 and 4. Formally that model can’t be rejected
as fitting the data as well as the higher parameter model at a 95% confidence threshold:

> glm(ced.del ~ cat + follows + I(class == 1) + I(class==3), family=binomial("logit"))

Call: glm(formula = ced.del ~ cat + follows + I(class == 1) + I(class ==

3), family = binomial("logit"))

Coefficients:

(Intercept) catd catm catn catv

0.009838 -0.170717 0.181871 0.666142 -0.789446

followsP followsV I(class == 1)TRUE I(class == 3)TRUE

0.957487 0.529646 -1.328227 -0.280901

Degrees of Freedom: 51 Total (i.e. Null); 43 Residual

Null Deviance: 958.7

Residual Deviance: 202.1 AIC: 447.5

> pchisq(202.08-198.63, 1)

[1] 0.9367482

4

However, in terms of our model, where class is a scale, collapsing together classes 2 and 4 seems rather
dubious, and should be put aside.

But it does seem reasonable to collapse together some of the word classes. a and d are certainly a natural
class of noun modifiers, and it’s perhaps not unreasonable to group those with m. Let’s try those models.
This one is worse:

> glm(ced.del ~ I(cat=="n") + I(cat=="v") + follows + factor(class), family=binomial("logit"))

Call: glm(formula = ced.del ~ I(cat == "n") + I(cat == "v") + follows +

factor(class), family = binomial("logit"))

Coefficients:

(Intercept) I(cat == "n")TRUE I(cat == "v")TRUE followsP followsV

-1.2699 0.5750 -0.8559 1.0133 0.5771

factor(class)2 factor(class)3 factor(class)4

1.2865 1.0733 1.4029

Degrees of Freedom: 51 Total (i.e. Null); 44 Residual

Null Deviance: 958.7

Residual Deviance: 229.1 AIC: 472.6

> pchisq(229.11-198.63, 2)

[1] 0.9999998

But this one cannot be rejected at a 95% confidence level:

> summary(glm(ced.del ~ I(cat=="n") + I(cat=="v") + I(cat=="m") +

follows + factor(class), family=binomial))

Call:

glm(formula = ced.del ~ I(cat == "n") + I(cat == "v") + I(cat ==

"m") + follows + factor(class), family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.26753 -1.22240 0.09571 1.05274 6.41257

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.43311 0.10177 -14.081 < 2e-16

I(cat == "n")TRUE 0.78333 0.06741 11.621 < 2e-16

I(cat == "v")TRUE -0.64879 0.20680 -3.137 0.00171

I(cat == "m")TRUE 0.29603 0.05634 5.254 1.49e-07

followsP 0.96188 0.07382 13.030 < 2e-16

followsV 0.53450 0.05659 9.445 < 2e-16

factor(class)2 1.26564 0.10314 12.271 < 2e-16

factor(class)3 1.04507 0.10352 10.096 < 2e-16

factor(class)4 1.37014 0.10150 13.498 < 2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 958.66 on 51 degrees of freedom

Residual deviance: 201.47 on 43 degrees of freedom

AIC: 446.94

5

Number of Fisher Scoring iterations: 4

> pchisq(201.5-198.63, 1)

[1] 0.9097551

So, that seems like what we can do to sensibly reduce the model. But what about the fact that it doesn’t
actually fit the data excellently? We’ll address that below.

But let’s first again look at the model coefficients, and how they express odds.

> subset(cedegren, class==2 & cat=="m")

sDel sNoDel cat follows class

14 377 349 m C 2

19 233 120 m V 2

24 98 27 m P 2

> pDel.followsC = 377/(377+349)

> pDel.followsV = 233/(233+120)

> pDel.followsP = 98/(98+27)

> oDel.followsC = pDel.followsC / (1 - pDel.followsC)

> oDel.followsV = pDel.followsV / (1 - pDel.followsV)

> oDel.followsP = pDel.followsP / (1 - pDel.followsP)

> oDel.followsP / oDel.followsC

[1] 3.360055

> exp(0.96188)

[1] 2.616611

> oDel.followsV / oDel.followsC

[1] 1.797458

> exp(0.53450)

[1] 1.706595

For these cells (chosen as cells with lots of data points. . .), the model coefficients fairly accurately capture
the change in odds of s-Deletion by moving from the baseline of a following consonant to a following pause
or vowel. You can more generally see this effect at work by comparing the model predictions for these cells
in terms of logits:

> subset(cbind(cedegren, pred.logit=predict(ced.logr)), class==2 & cat=="m")

sDel sNoDel cat follows class pred.logit

14 377 349 m C 2 0.1307542

19 233 120 m V 2 0.6648370

24 98 27 m P 2 1.0833024

> 0.6648370 - 0.1307542

[1] 0.5340828

> 1.0833024 - 0.1307542

[1] 0.9525482

You can also get model predictions in terms of probabilities by saying predict(ced.logr, type="response").
This can be used to calculate accuracy of predictions. For example:

> correct <- sum(cedegren$sDel * (predict(ced.logr, type="response") >= 0.5)) +

sum(cedegren$sNoDel * (predict(ced.logr, type="response") < 0.5))

> tot <- sum(cedegren$sDel) + sum(cedegren$sNoDel)

> correct/tot

[1] 0.6166629

The low accuracy mainly reflects the high variation in the data: cat, class, and follows are only weak
predictors. A saturated model only has accuracy of 0.6275. The null model baseline is 1 − (3755/(3755 +

6

5091)) = 0.5755. Note the huge difference between predictive accuracy and model fit! Is this a problem?
It depends on what we want to do with the model. (It is certainly the case that logistic regression cannot
account for any hidden correlations that are not coded in the model.)

Let us look for problems by comparing observed and fitted values, placed onto a scale of counts (not
proportions). You can get the full table by the first command below, or more readably by putting it into a
data frame with what you had before, but I omit the results (a whole page):

data.frame(fit=fitted(ced.logr)*(sDel+sNoDel), sDel, tot=(sDel+sNoDel))

ced.fit <- cbind(cedegren, data.frame(fit=fitted(ced.logr)*(sDel+sNoDel), sDel, tot=(sDel+sNoDel),

diff=(fitted(ced.logr)*(sDel+sNoDel)-sDel)))

The results can be made into a simple plot (figure 2:

> plot(ced.fit$sDel, ced.fit$fit)

> abline(a=0, b=1)

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0
50

0
60

0

ced.fit$sDel

ce
d.

fit
$f

it

Figure 2: Model fit

This looks good, but it might instead be more revealing to look at a log scale. I use +1 since there are
empty cells, and log(0) is undefined, and base 2 just for human interpretation ease. The result is in figure 3

plot(log(ced.fit$sDel + 1, 2), log(ced.fit$fit + 1, 2))

abline(a=0, b=1)

Of course, we would expect some of the low count cells to be badly estimated. But some are quite badly
estimated. E.g., for cat=n, f=V, class=1, 10 deletions are predicted, but actually 20/21 tokens have deletion.
In general, a number of cells for class 1 are poorly predicted, and we might worry that the model does okay
on average only because very little class 1 data was collected.

Looking at the differences, 3 of the worst fit cells concern nouns of class 1 speakers:

> subset(ced.fit, cat=="n" & class==1)

sDel sNoDel cat follows class fit sDel.1 tot diff

5 34 40 n C 1 25.355376 34 74 -8.644624

10 20 1 n V 1 9.884003 20 21 -10.115997

13 4 15 n P 1 10.919041 4 19 6.919041

The assumptions of the logistic regression model are that each level of each factor (or each continuous
explanatory variable) has an independent effect on the response variable. Explanatory variables do not have

7

0 2 4 6 8

2
4

6
8

log(ced.fit$sDel + 1, 2)

lo
g(

ce
d.

fit
$f

it
+

 1
, 2

)

Figure 3: Model fit (log(x + 1, 2) scaled axes)

any kind of special joint effect (“local conjunctions”) unless we explicitly put interaction terms into the
model. We can put in an interaction term between just this category and class explicitly, and this model is
significantly better:

> glm(ced.del ~ cat + follows + factor(class) + I(cat=="n" & class==1), family=binomial)

Call: glm(formula = ced.del ~ cat + follows + factor(class) + I(cat ==

"n" & class == 1), family = binomial)

Coefficients:

(Intercept) catd catm

-1.4573 -0.1732 0.1715

catn catv followsP

0.6243 -0.7749 0.9561

followsV factor(class)2 factor(class)3

0.5388 1.4222 1.1999

factor(class)4 I(cat == "n" & class == 1)TRUE

1.5256 0.6147

Degrees of Freedom: 51 Total (i.e. Null); 41 Residual

Null Deviance: 958.7

Residual Deviance: 191.3 AIC: 440.8

> pchisq(198.63-191.34, 1)

>

> pchisq(deviance(ced.logr) - deviance(ced.logr2), df.residual(ced.logr) - df.residual(ced.logr2))

[1] 0.993066

The second form of the call to pchisq shows a cleverer way to get the deviance out of the models, rather
than having to type it in again by hand. But it actually involves typing many more characters. . . .

You can more generally put an interaction term between all levels of two factors by using the : operator:

> summary(glm(ced.del ~ cat + follows + factor(class) + cat:factor(class), family=binomial))

Call:

8

glm(formula = ced.del ~ cat + follows + factor(class) + cat:factor(class),

family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-4.17648 -0.66890 -0.01394 0.88999 5.65947

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.852e+00 3.200e-01 -5.786 7.20e-09

catd 2.471e-03 4.018e-01 0.006 0.995093

catm 7.623e-01 3.487e-01 2.186 0.028815

catn 1.633e+00 3.719e-01 4.391 1.13e-05

catv -1.603e+01 1.214e+03 -0.013 0.989464

followsP 9.573e-01 7.423e-02 12.896 < 2e-16

followsV 5.397e-01 5.693e-02 9.480 < 2e-16

factor(class)2 1.952e+00 3.568e-01 5.471 4.48e-08

factor(class)3 1.373e+00 3.565e-01 3.852 0.000117

factor(class)4 2.081e+00 3.506e-01 5.937 2.91e-09

catd:factor(class)2 -4.803e-01 4.427e-01 -1.085 0.278049

catm:factor(class)2 -7.520e-01 3.877e-01 -1.940 0.052417

catn:factor(class)2 -9.498e-01 4.143e-01 -2.292 0.021890

catv:factor(class)2 1.473e+01 1.214e+03 0.012 0.990323

catd:factor(class)3 9.870e-02 4.451e-01 0.222 0.824513

catm:factor(class)3 -2.376e-01 3.874e-01 -0.613 0.539550

catn:factor(class)3 -1.085e+00 4.129e-01 -2.627 0.008624

catv:factor(class)3 1.679e+01 1.214e+03 0.014 0.988968

catd:factor(class)4 -1.898e-01 4.366e-01 -0.435 0.663692

catm:factor(class)4 -8.533e-01 3.805e-01 -2.242 0.024942

catn:factor(class)4 -1.071e+00 4.074e-01 -2.627 0.008604

catv:factor(class)4 1.521e+01 1.214e+03 0.013 0.990006

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 958.66 on 51 degrees of freedom

Residual deviance: 135.68 on 30 degrees of freedom

AIC: 407.15

Number of Fisher Scoring iterations: 15

> pchisq(198.63-135.68, 42-30)

[1] 1

This model does fit significantly better than the model without the interaction term. However, looking at
the coefficients, not only have a lot of parameters been added, but many of them look to be otiose. (Note
similar estimates, little confidence that values aren’t zero.) It looks like we could build a better model, and
we will in a moment after another note on interaction terms.

Rather than writing cat + factor(class) + cat:factor(class), you can more simply write cat*factor(class).
This works iff you want the written interaction term, and interaction terms and main effects for every subset
of these variables. For instance, we can make the saturated model with:

summary(glm(ced.del ~ cat*follows*factor(class), family=binomial))

9

By construction, this model has 0 degrees of freedom, and a residual deviance of 0 (approximately – minor
errors in numeric optimization occur). However, it isn’t very interesting as a model.

It’d be nice to understand the linguistic situation better, but looking just at the model we built with
the cat:class interaction term, it now looks like this is what is going on: cat n, and more marginally, cat
m have special behavior (the other categories don’t). The following environment and class are significant
(even though classes 2 and 4 seem to behave similarly). The crucial interaction is then between class and
cat n (where deletion of /s/ occurs highly significantly less often than would otherwise be expected for class
3 and cat n, and, although the counts are small, rather more often than expected with class 1 and cat n).
So, here’s a couple of last attempts at a model:

> summary(glm(ced.del ~ I(cat=="n") + I(cat=="m") + follows + factor(class)

+ I(cat=="n"&class==3)+I(cat=="n"&class==1), family=binomial))

Call:

glm(formula = ced.del ~ I(cat == "n") + I(cat == "m") + follows +

factor(class) + I(cat == "n" & class == 3) + I(cat == "n" &

class == 1), family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-4.18107 -1.34799 0.07195 1.09391 5.98469

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.59891 0.11696 -13.671 < 2e-16 ***

I(cat == "n")TRUE 0.96556 0.07861 12.283 < 2e-16 ***

I(cat == "m")TRUE 0.32632 0.05533 5.898 3.68e-09 ***

followsP 0.95515 0.07399 12.910 < 2e-16 ***

followsV 0.51822 0.05640 9.188 < 2e-16 ***

factor(class)2 1.36269 0.12019 11.338 < 2e-16 ***

factor(class)3 1.29196 0.12188 10.600 < 2e-16 ***

factor(class)4 1.48044 0.11872 12.470 < 2e-16 ***

I(cat == "n" & class == 3)TRUE -0.58351 0.11844 -4.927 8.37e-07 ***

I(cat == "n" & class == 1)TRUE 0.41904 0.23116 1.813 0.0699 .

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 958.66 on 51 degrees of freedom

Residual deviance: 180.56 on 42 degrees of freedom

AIC: 428.02

Number of Fisher Scoring iterations: 4

This model has the same number of parameters as the initial model we built, but improves the loglikelihood
by about 18. That is, it makes the observed data more than 65 million times more likely.

But if you look back at the raw stats for nouns of class 1 speakers, there’s still just this weird fact that
they almost always delete /s/ before a vowel, and almost never delete it before a pause (why ever that may
be). And our model still cannot capture that! But if we make an interaction between class 1, cat n and the
levels of follows, then we could. We add two more parameters, but, behold, the residual deviance goes down
a lot! The deviance is close to the cat:class interaction model, in a rather more interesting way.

10

> summary(ced.logr <- glm(ced.del ~ I(cat=="n") + I(cat=="m") + follows + factor(class)

+ I(cat=="n"&class==3)+I(cat=="n"&class==1) +I(cat=="n"&class==1):follows,

family=binomial))

Call:

glm(formula = ced.del ~ I(cat == "n") + I(cat == "m") + follows +

factor(class) + I(cat == "n" & class == 3) + I(cat == "n" &

class == 1) + I(cat == "n" & class == 1):follows, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.634e+00 -1.280e+00 -1.054e-08 9.274e-01 6.079e+00

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.59612 0.11698 -13.644 < 2e-16 ***

I(cat == "n")TRUE 0.95929 0.07864 12.198 < 2e-16 ***

I(cat == "m")TRUE 0.32468 0.05534 5.867 4.45e-09 ***

followsP 0.99832 0.07532 13.255 < 2e-16 ***

followsV 0.50026 0.05665 8.831 < 2e-16 ***

factor(class)2 1.36256 0.12021 11.334 < 2e-16 ***

factor(class)3 1.29016 0.12191 10.583 < 2e-16 ***

factor(class)4 1.47780 0.11874 12.445 < 2e-16 ***

I(cat == "n" & class == 3)TRUE -0.58311 0.11854 -4.919 8.70e-07 ***

I(cat == "n" & class == 1)TRUE 0.47431 0.26866 1.765 0.07749 .

followsP:I(cat == "n" & class == 1)TRUE -2.15756 0.61380 -3.515 0.00044 ***

followsV:I(cat == "n" & class == 1)TRUE 2.65799 1.05244 2.526 0.01155 *

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 958.66 on 51 degrees of freedom

Residual deviance: 146.72 on 40 degrees of freedom

AIC: 398.19

Number of Fisher Scoring iterations: 4

3 Long format R logistic regression models (the Design package)

You need to have loaded the Design package for this part to work. Look at Baayen chapter 1 if you don’t
know how to do this!

Until now, we have used binary outcome data in a summary format (counts of sDel and sNoDel for each
combination of levels of factors). An alternative is long format, where each observation is a line. Collected
data often starts out in this form. You can then examine the data by constructing cross-tabulations. You
can do them with any number of variables, but they get harder to read with more than two.

> ced.long <- read.table("cedegren-long.txt", header=T)

> ced.long[1:5,]

sDel cat follows class

1 1 m C 1

11

2 1 m C 1

3 1 m C 1

4 1 m C 1

5 1 m C 1

> ced.long$class <- factor(ced.long$class)

> attach(ced.long)

> xtabs(~ sDel + class)

class

sDel 1 2 3 4

0 414 1033 1065 1243

1 165 1514 1320 2092

Do we need to build logistic regression models, or could we get everything that we need to get from
just looking at crosstabs? For instance, it seems like we can already see here that /s/-deletion is strongly
disfavored by class 1 speakers, but moderately preferred by other classes. Sometimes looking at crosstabs
works, but the fundamental observation is this: the predictive effect of variables can be spurious, hidden
or reversed when just looking at the marginal totals in crosstabs, because they do not take into account
correlations of explanatory variables. The magical good thing that logistic regression does is work out the
best way to attribute causal effect to explanatory variables. (Of course, it can only do this for variables
coded in the data. . . .)

Contrary to what Baayen suggests, you can load this into the basic glm function. Here’s what you get:

> summary(glm(sDel ~ cat + follows + class, family=binomial))

Call:

glm(formula = sDel ~ cat + follows + class, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.9219 -1.2013 0.7298 1.0796 1.8392

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.31827 0.12221 -10.787 < 2e-16

catd -0.16931 0.10032 -1.688 0.091459

catm 0.17858 0.08952 1.995 0.046053

catn 0.66672 0.09651 6.908 4.91e-12

catv -0.76754 0.21844 -3.514 0.000442

followsP 0.95255 0.07400 12.872 < 2e-16

followsV 0.53408 0.05660 9.436 < 2e-16

class2 1.27045 0.10320 12.310 < 2e-16

class3 1.04805 0.10355 10.122 < 2e-16

class4 1.37425 0.10155 13.532 < 2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 12061 on 8845 degrees of freedom

Residual deviance: 11301 on 8836 degrees of freedom

AIC: 11321

Number of Fisher Scoring iterations: 4

The deviances are huge when each observation is a cell. But note that the difference between the null and

12

residual deviance is the same as we started off with originally (760). And the estimated coefficients are just
as we saw previously.

However, nevertheless, the Design package lets you do various spiffy stuff. So, let’s try that one.
It turns out that some things don’t work with lrm unless you use the magical incantation to create a

data distribution object. I’m still trying to figure out what this does myself, but if you print it, part of it
seems to summarize the factors. . . .

> ced.ddist <- datadist(ced.long)

> options(datadist="ced.ddist")

But at any rate: (i) you need to have done it before you can call various other methods like summary or
anova on an lrm object, and (ii) it’s best to call it right at the beginning and set it with the options()
function, because then various data statistics are stored there rather than being computed each time.

> ced.lrm <- lrm(sDel ~ cat + follows + factor(class))

> ced.lrm

Logistic Regression Model

lrm(formula = sDel ~ cat + follows + factor(class))

Frequencies of Responses

0 1

3755 5091

Obs Max Deriv Model L.R. d.f. P C Dxy Gamma

8846 5e-09 760.04 9 0 0.66 0.32 0.336

Tau-a R2 Brier

0.156 0.111 0.224

Coef S.E. Wald Z P

Intercept -1.3183 0.12221 -10.79 0.0000

cat=d -0.1693 0.10032 -1.69 0.0915

cat=m 0.1786 0.08952 1.99 0.0461

cat=n 0.6667 0.09651 6.91 0.0000

cat=v -0.7675 0.21844 -3.51 0.0004

follows=P 0.9525 0.07400 12.87 0.0000

follows=V 0.5341 0.05660 9.44 0.0000

class=2 1.2704 0.10320 12.31 0.0000

class=3 1.0480 0.10355 10.12 0.0000

class=4 1.3742 0.10155 13.53 0.0000

Here ”Model L.R.” is again the difference between Null and Residual deviance. This is again associated with
a difference in degrees of freedom and a p-value. Hooray! Our model is better than one with no factors!

Now I can get an anova. Note: for lrm, ANOVA does not present sequential tables adding factors, but
considers each factor separately!

> anova(ced.lrm)

Wald Statistics Response: sDel

Factor Chi-Square d.f. P

cat 164.93 4 <.0001

follows 214.96 2 <.0001

13

class 197.62 3 <.0001

TOTAL 656.61 9 <.0001

Among the nifty features of lrm is that you can do penalized (or regularized) estimation of coefficients to
avoid overfitting (searched for with pentrace, or specified with the penalty parameter in lrm) – see Baayen
pp. 224-227. This was the regularlization that appeared in the Hayes and Wilson paper.

lrm has a really nice option to plot the logit coefficients (turned back into probabilities) for each level of
each factor. AFAIK, you can’t do this with glm.

> par(mfrow = c(2,2))

> plot(ced.lrm, fun=plogis, ylab="Pr(sDel)", adj.subtitle=F, ylim=c(0,1))

It’d be even more fun with a real-valued explanatory variable.

cat

P
r(

sD
el

)

a d m n v

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

− −

−

−

−

−
−

−

−

−

follows

P
r(

sD
el

)

C P V

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−

−
−

−

−
−

class

P
r(

sD
el

)

1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−

−
−

−

−

−
−

−

One thing that we haven’t addressed is that the class variable should by rights be an ordinal scale. There
is an extension of logistic regression to ordinal explanatory variables, and it’s discussed in Baayen, pp. 227ff.
However, looking at this figure shows that the probability of /s/-deletion does not increase monotonically as
you head along this putative ordinal scale. Something else seems to be at work. And so an ordinal logistic
regression analysis is counterindicated here.

4 Working out data likelihood: practice with vectors

Most R calculations work directly on vectors, and that’s often handy. Here we use that to directly work out
the likelihood of the data according to a model. We will use our very initial model again for illustration.

We start with predicted probabilities of sDeletion for each cell, and turn them into log props:

> probsdel <- fitted(ced.logr)

14

> logprobdel <- log(probsdel)

> logprobnodel <- log(1 - probsdel)

Each of these components is a vector, as you’d see if you print them.
We then work out the total data loglikelihood in log space (a scalar) by summing the vectors of log

expected counts. We would exponentiate it for data likelihood (but, here, this is too small a number for the
computer to represent).

> loglike <- sum(cedegren$sDel * logprobdel) + sum(cedegren$sNoDel * logprobnodel)

> loglike

[1] -5650.287

> exp(loglike)

[1] 0

We can now also work out the loglikelihood of the null model, which just uses the overall rate of /s/-
Deletion in the data (3755 / (3755 + 5091)).

> sDelProb <- 3755 / (3755 + 5091)

> loglikenull <- 3755 * log(sDelProb) + 5091 * log(1-sDelProb)

> loglikenull

[1] -6030.306

We then work out the G2 quantity of −2 times the difference in log likelihoods:

> Gsq = -2 * (loglikenull - loglike)

> Gsq

[1] 760.0375

Almost miraculously, this does turn out to be exactly the same quantity that glm and lrm gave us above!!

15

