# simple logistic regression simulation require(MCMCpack) require(ggplot2) a = 1 b = 2 n = 1000 x = rnorm(n) z = a + b*x pr = 1/(1+exp(-z)) y = rbinom(n,1,pr) df = data.frame(y=y,x=x) model <- glm(y ~ x,family="binomial",data=df) bayes <- MCMClogit(y~x,data=df) ggplot(df,aes(x=x,y=y))+geom_point()+stat_smooth(method="glm",se=FALSE)