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ABSTRACT

In this paper we present a method to derive Mel-frequency cep-
stral coefficients directly from the power spectrum of a speech
signal. We show that omitting the filterbank in signal analy-
sis does not affect the word error rate. The presented approach
simplifies the speech recognizer’s front end by merging subse-
quent signal analysis steps into a single one. It avoids possible
interpolation and discretization problems and results in acom-
pact implementation. We show that frequency warping schemes
like vocal tract normalization (VTN) can be integrated easily in
our concept without additional computational efforts. Recog-
nition test results obtained with the RWTH large vocabulary
speech recognition system are presented for two different cor-
pora: The German VerbMobil II dev99 corpus, and the English
North American Business News 94 20k development corpus.

1. INTRODUCTION

Most of today’s automatic speech recognition (ASR) systems
are based on some type of Mel-frequency cepstral coefficients
(MFCCs), which have proven to be effective and robust under
various conditions. This paper describes an alternative concept
to derive MFCCs directly from the power spectrum of the speech
signal. A number of subsequent steps of the traditional signal
analysis are integrated into the cepstrum transformation,which
avoids possible discretization and interpolation errors.The new
concept yields equally good recognition performance without a
filterbank, thus reduces the number of parameters that need to be
optimized.

The remainder of this paper is organized as follows: In the
next section we will briefly recapitulate the typical signalanaly-
sis procedure. Then we discuss in detail implementational issues
of the traditional MFCC computation and present our integrated
approach. In section 4 we will demonstrate that frequency warp-
ing schemes like VTN can be easily integrated as well. Finally,
we will present recognition test results for the VerbMobil II and
the North American Business News Corpus, and draw the con-
clusions of our work.

2. SIGNAL ANALYSIS

Figure 1 shows the signal analysis front end of a typical ASR
system. The speech waveform, sampled at 8 or 16 kHz, is first
differentiated (preemphasis) and cut into a number of overlap-
ping segments (windowing), each 25 ms long and shifted by
10 ms. A Hamming window is multiplied and the Fourier trans-
form (FFT) is computed for each frame. The power spectrum
is warped according to the Mel-scale in order to adapt the fre-
quency resolution to the properties of the human ear. Then the
spectrum is segmented into a number of critical bands by means
of a filterbank. The filterbank typically consists of overlapping
triangular filters. A discrete cosine transformation (DCT)ap-
plied to the logarithm of the filterbank outputs results in the raw
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Figure 1: Typical signal analysis front end

MFCC vector. The highest cepstral coefficients are omitted to
smooth the cepstra and minimize the influence of the pitch which
is irrelevant for the speech recognition process. The mean of
each cepstral component is subtracted, and the variance of each
component may also be normalized. Finally, the MFCC vector
is augmented with time derivatives. Additional transformations
like linear discriminant analysis (LDA) may further increase the
temporal context and the discriminance of the acoustic vector.
As a result signal analysis provides every 10 ms an acoustic vec-
tor, which is typically of dimension 25 to 50.

3. COMPUTATION OF MFCCS

We now want to have a closer look at the computation of cep-
stral coefficients from speech spectra, i.e. the signal analysis
steps between FFT and DCT. We will discuss problems of dif-
ferent implementations, and finally present a method to compute
MFCCs directly on the power spectrum. Both the traditional and
the integrated approach suggested here are depicted in Figure 2.
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Figure 2: Comparison of the traditional MFCC computation
(left) with the integrated approach (right) investigated here.

3.1. Traditional Filterbank Approach

Mel-frequency warping and the filterbank can be implemented
easily in the frequency domain (see Figure 3). One method is
to transform the power spectrum, i.e. to compute a Mel-warped
spectrum by interpolation from the original discrete-frequency
power spectrum. The advantage is that the following triangular
filters all have the same shape and can be placed uniformly at
the Mel-warped spectrum. On the other hand, the discretization
may be especially critical due to the large dynamic range of the
power spectrum.
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Figure 3: Schematic plot of different triangular filterbankimple-
mentations. The filters are either uniformly distributed atthe
Mel-warped spectrum, or non uniformly at the original spec-
trum. In the latter case, they should be asymmetric as well.

Another way is to place the triangular filters non uniformly
at the unwarped spectrum and thereby implicitely incorporate
Mel-frequency scaling [1]. However, discretization errors may
then occur if the spectral resolution is not appropriate. The low-
est filters could be placed at a very few spectral lines only, and
the maximum of one of the filters may fall just inbetween two
spectral lines. In addition, the filters should not be triangular
and symmetric anymore, but bend according to the shape of the
Mel-function at the position of the filter.

Last but not least it is not clear how many filters are required
and which filter shape is optimal. Triangular filters are occa-
sionally replaced by trapezoidal or more complex shaped ones
derived from auditory models, and we sometimes observed bet-
ter word error rates when using filters with cosine shape.

In all cases the logarithm of the filterbank output is cosine
transformed to obtain MFCCs.

3.2. Computing MFCCs Directly On The Power Spectrum

We have investigated an alternative method to compute Mel-
frequency warped cepstral coefficients directly on the power
spectrum and thereby avoid possible problems of the standard
approach.

Ignoring any spectral warping for a moment, cepstral coeffi-
cientsck can be derived by Eq. (1):ck = 12� �Z�� d! lg jX(ej!)j � ej!k (1)

Depending on whether a filterbank is used or not,jX(�)j
stands for either the filterbank outputs or the power spectrum.

The sequential application of a monotone invertible fre-
quency warping functiong : [��; �] ! [��; �] and DCT can
be expressed as follows:! ! ~! = g(!)ck = 12� �Z�� d~! lg jX(ejg�1(~!))j � ej~!k (2)

To incorporate warping directly into the cosine transforma-
tion, we change the integration variable and use the derivative of
the warping functiond~!=d! (Eq. 3). The continuous integral is
later approximated in the standard way by a discrete sum (Eq.4):ck = 12� �Z�� d! lg jX(ej!)j � ejg(!)k � g0(!) (3)�= 1N N2 �1Xn=0 �lg jX(ej 2�nN )j � cos[g�2�nN � k]�g0�2�nN ��

(4)

One specific type of frequency warping is the Mel-frequency
scaling�(�), which is usually carried out according to formula
(5) with the sampling frequencyfs [6]:�(!) = 2595 � lg�1 + !fs2� � 700Hz� (5)

For integration into the cosine transformation, the Mel-
warping function needs to be normalized in order to meet the
criterion ~�(�) = �.~�(!) = ��(�) � �(!)= d � lg�1 + !fs2� � 700Hz� (6)

with d = �lg �1 + fs2 � 700Hz � :
Replacingg(�) in Eq. (4) by~�(�) leads to a compact imple-

mentation of MFCC computation with only a few lines of code.
A look-up table for constants like the derivative and the cosine
term can be precomputed, all that remains is a matrix multipli-
cation on the logarithm of the power spectrum. Figure 4 shows



the effect of the modified signal analysis on two cepstrum coeffi-
cients for a test sentence from the VerbMobil II corpus. Whereas
the lower order coefficients are almost identical, the difference
increases with higher coefficient orders due to the discarted fil-
terbank.
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Figure 4: Comparison of cepstrum coefficients 1 (upper curve)
and 15 (lower curve) for a test sentence from the VerbMobil II
corpus (baseline: traditional filterbank approach; integrated:
DCT with integrated Mel-frequency warping).

4. INTEGRATION OF VTN

Vocal tract length normalization (VTN) is a speaker normaliza-
tion scheme that also relies on warping the power spectrum. The
idea is to compensate for the shift of formants in speech spectra
caused by the speaker-specific length of the vocal tract.

It has been shown before that one possible VTN implemen-
tation is to modify the location of filters in the filterbank just as
for Mel-frequency scaling [2]. From what we have presented in
the previous section it is clear, however, that VTN can also be
fully integrated into the cepstrum transformation.

The VTN warping function�� : [0; �] ! [0; �] needs to
be monotone and invertible as well. A simple choice is a piece-
wise linear warping function as shown in Figure 5. The inflexion
frequency!0 at which the slope of the function changes depends
on�: !0 = 8><>: 78� � � 178 � �� � > 1

In order to avoid complicated case distinctions for different
warping factors and frequencies, we write the warping function! ! ��(!) in the following convenient form��(!) = �!! + 
! (7)
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Figure 5: Warping function for piece-wise linear VTN

with parameters�! and
!. Although these parameters formally
depend on!, they can take on only two values:�! = ( � ! � !0� � �!0� � !0 ! > !0
! = � 0 ! � !0(�� 1) � � � !0� � !0 ! > !0

Mel-warping is applied after the spectra are scaled according
to VTN. Hence, the combination�(�) of Mel- and VTN warping
becomes�(!) = ~�(��(!))= d � lg�1 + [�!! + 
!] � fs2� � 700Hz �

(8)

with the derivative:�0(!) = d � �! � fs(2� � 700Hz + [�!! + 
!] � fs) � ln(10) (9)

Cepstrum coefficients with integrated VTN and Mel-
frequency warping are obtained by replacingg(�) in Eq. (4)
by�(�).

5. RECOGNITION TESTS

To evaluate the proposed signal analysis approach, we performed
recognition tests with the RWTH large vocabulary speech recog-
nition system (see [3] , [4], and [5] for detailed system descrip-
tions) on two different corpora. The VerbMobil II task (VM II)
is German spontaneous speech with a 10k-word vocabulary, and
the North American Business News task (NAB) is clean read
speech of Wall Street Journal texts with a recognition vocabu-
lary of 20k. Details of the training and test corpora are given in
Table 1.

Table 1: Statistics of the training and test corpora
Corpus VerbMobil II Wall Street Journal

Training Test Training Test
CD1-41 DEV99 WSJ0+1 DEV-94

Duration 61.5h 1.6h 81.4h 0.8h
Sil. Portion 13% 11% 27% 19%
# Speakers 857 16 284 20
# Sent. 36,015 1,081 37,571 310
# Words 701,512 14,662 649,624 7,378
Trigram PP. - 62.0 - 126.6
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Figure 6: Warping factor distribution of the VM II training
speakers. The upper histogram was obtained with Mel- and VTN
warped spectra obtained by linear interpolation, the lowerhis-
togram with integrated Mel-frequency and VTN warping.

The first result of using the integrated approach in VTN
training was a much smoother distribution of warping factors.
Figure 6 shows the corresponding histograms for the VM II
training corpus. A closer inspection revealed that linear inter-
polation of spectral lines when transforming the power spectrum
for VTN warping was the main reason for the erratic distribution
observed before. It turned out, however, that the word errorrate
(WER) was only marginally affected by this difference.

Next, we compared the recognition performance of the tra-
ditional signal analysis approach (baseline) with the integrated
MFCC computation. Additional tests were carried out with two-
pass and fast VTN as described in [4]. The best results of each
setup are summarized in Table 2.

Table 2: Recognition test results for the VM II and the NAB cor-
pus applying no VTN, two-pass, and fast VTN (baseline: tradi-
tional filterbank approach; integrated: DCT with integrated fre-
quency warping).

Corp. VTN Cepstrum #Dns Overall [%]
[k] Del - Ins WER

VM II no Baseline 455 4.9 - 4.8 25.7
Integrated 457 5.0 - 4.4 25.3

2-Pass Baseline 450 4.4 - 4.3 23.8
Integrated 451 4.9 - 4.1 24.0

Fast Baseline 450 4.5 - 4.5 23.8
Integrated 451 5.0 - 4.1 24.0

NAB no Baseline 596 1.5 - 2.3 12.5
Integrated 599 1.5 - 2.3 12.4

2-Pass Baseline 563 1.4 - 2.4 11.8
Integrated 591 1.4 - 2.2 11.7

Fast Baseline 563 1.4 - 2.3 11.9
Integrated 591 1.5 - 2.2 11.8

We found that the recognition performance of both meth-
ods is similar. In most cases the integrated approach performed
almost as good or slightly better than the traditional sequential
analysis with a filterbank. A similar behaviour was found on
smaller German and Italian telephone speech corpora (VerbMo-
bil and EuTrans).

6. CONCLUSIONS

In this paper we have presented an alternative signal analy-
sis approach that merges a number of subsequent analysis step
into one. Omitting the filterbank and integrating Mel-frequency
warping into the cepstrum transformation simplifies the signal
analysis (no filterbank parameters need to be optimized), avoids
possible interpolation and discretization problems, and leads to
a compact implementation of the MFCC front end. We have
shown that concepts like VTN that rely on warping speech spec-
tra can be easily integrated as well. Recognition tests on the
VerbMobil II and the North American Business News corpus re-
vealed that the new approach performs as good as the traditional
signal analysis.
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