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Abstract

Being among the most popular and efficient classification and regression methods
currently available, implementations of support vector machines exist in almost every
popular programming language. Currently four R packages contain SVM related software.
The purpose of this paper is to present and compare these implementations.
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1. Introduction

Support Vector learning is based on simple ideas which originated in statistical learning theory
(Vapnik 1998). The simplicity comes from the fact that Support Vector Machines (SVMs)
apply a simple linear method to the data but in a high-dimensional feature space non-linearly
related to the input space. Moreover, even though we can think of SVMs as a linear algorithm
in a high-dimensional space, in practice, it does not involve any computations in that high-
dimensional space. This simplicity combined with state of the art performance on many
learning problems (classification, regression, and novelty detection) has contributed to the
popularity of the SVM. The reminder of the paper is structured as follows. First, we provide
a short introduction into Support Vector Machines, followed by an overview of the SVM-
related software available in R and other programming languages. Next follows a section on
the data sets we will be using. Then, we describe the four available SVM implementations in
R. Finally, we present the results of a timing benchmark.

2. Support vector machines

SVMs use an implicit mapping Φ of the input data into a high-dimensional feature space
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2 Support Vector Machines in R

defined by a kernel function, i.e., a function returning the inner product 〈Φ(x),Φ(x′)〉 between
the images of two data points x, x′ in the feature space. The learning then takes place in the
feature space, and the data points only appear inside dot products with other points. This
is often referred to as the “kernel trick” (Schölkopf and Smola 2002). More precisely, if a
projection Φ : X → H is used, the dot product 〈Φ(x),Φ(x′)〉 can be represented by a kernel
function k

k(x, x′) = 〈Φ(x),Φ(x′)〉, (1)

which is computationally simpler than explicitly projecting x and x′ into the feature space H.

One interesting property of support vector machines and other kernel-based systems is that,
once a valid kernel function has been selected, one can practically work in spaces of any
dimension without any significant additional computational cost, since feature mapping is
never effectively performed. In fact, one does not even need to know which features are being
used.

Another advantage of SVMs and kernel methods is that one can design and use a kernel for a
particular problem that could be applied directly to the data without the need for a feature
extraction process. This is particularly important in problems where a lot of structure of the
data is lost by the feature extraction process (e.g., text processing).

Training a SVM for classification, regression or novelty detection involves solving a quadratic
optimization problem. Using a standard quadratic problem solver for training an SVM would
involve solving a big QP problem even for a moderate sized data set, including the computation
of an m×m matrix in memory (m number of training points). This would seriously limit the
size of problems an SVM could be applied to. To handle this issue, methods like SMO (Platt
1998), chunking (Osuna, Freund, and Girosi 1997) and simple SVM (Vishwanathan, Smola,
and Murty 2003) exist that iteratively compute the solution of the SVM and scale O(Nk)
where k is between 1 and 2.5 and have a linear space complexity.

2.1. Classification

In classification, support vector machines separate the different classes of data by a hyper-
plane

〈w,Φ(x)〉+ b = 0 (2)

corresponding to the decision function

f(x) = sign(〈w,Φ(x)〉+ b) (3)

It can be shown that the optimal, in terms of classification performance, hyper-plane (Vapnik
1998) is the one with the maximal margin of separation between the two classes. It can
be constructed by solving a constrained quadratic optimization problem whose solution w
has an expansion w =

∑
i αiΦ(xi) in terms of a subset of training patterns that lie on

the margin. These training patterns, called support vectors, carry all relevant information
about the classification problem. Omitting the details of the calculation, there is just one
crucial property of the algorithm that we need to emphasize: both the quadratic programming
problem and the final decision function depend only on dot products between patterns. This
allows the use of the “kernel trick” and the generalization of this linear algorithm to the
nonlinear case.
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In the case of the L2-norm soft margin classification the primal optimization problem takes
the form:

minimize t(w, ξ) =
1
2
‖w‖2 +

C

m

m∑
i=1

ξi

subject to yi(〈Φ(xi),w〉+ b) ≥ 1− ξi (i = 1, . . . ,m) (4)
ξi ≥ 0 (i = 1, . . . ,m)

where m is the number of training patterns, and yi = ±1. As in most kernel methods, the
SVM solution w can be shown to have an expansion

w =
m∑

i=1

αiyiΦ(xi) (5)

where non-zero coefficients (support vectors) occur when a point (xi, yi) meets the constraint.
The coefficients αi are found by solving the following (dual) quadratic programming problem:

maximize W (α) =
m∑

i=1

αi −
1
2

m∑
i,j=1

αiαjyiyjk(xi, xj)

subject to 0 ≤ αi ≤
C

m
(i = 1, . . . ,m) (6)

m∑
i=1

αiyi = 0.

This is a typical quadratic problem of the form:

minimize c>x + 1
2x>Hx

subject to b ≤ Ax ≤ b + r
l ≤ x ≤ u

(7)

where H ∈ Rm×m with entries Hij = yiyjk(xi, xj), c = (1, . . . , 1) ∈ Rm, u = (C, . . . , C) ∈ Rm,
l = (0, . . . , 0) ∈ Rm, A = (y1, . . . , ym) ∈ Rm, b = 0, r = 0. The problem can easily be solved in
a standard QP solver such as quadprog() in package quadprog (Weingessel 2004) or ipop()
in package kernlab (Karatzoglou, Smola, Hornik, and Zeileis 2005), both available in R (R
Development Core Team 2005). Techniques taking advantage of the special structure of the
SVM QP problem like SMO and chunking (Osuna et al. 1997) though offer much better
performance in terms of speed, scalability and memory usage.

The cost parameter C of the SVM formulation in Equation 7 controls the penalty paid by the
SVM for missclassifying a training point and thus the complexity of the prediction function.
A high cost value C will force the SVM to create a complex enough prediction function to
missclassify as few training points as possible, while a lower cost parameter will lead to a
simpler prediction function. Therefore, this type of SVM is usually called C-SVM.

Another formulation of the classification with a more intuitive hyperparameter than C is
the ν-SVM (Schölkopf, Smola, Williamson, and Bartlett 2000). The ν parameter has the
interesting property of being an upper bound on the training error and a lower bound on



4 Support Vector Machines in R

the fraction of support vectors found in the data set, thus controlling the complexity of the
classification function build by the SVM (see Appendix for details).

For multi-class classification, mostly voting schemes such as one-against-one and one-against-
all are used. In the one-against-all method k binary SVM classifiers are trained, where k is
the number of classes, each trained to separate one class from the rest. The classifiers are then
combined by comparing their decision values on a test data instance and labeling it according
to the classifier with the highest decision value.

In the one-against-one classification method (also called pairwise classification; see Knerr,
Personnaz, and Dreyfus 1990; Kreßel 1999),

(
k
2

)
classifiers are constructed where each one

is trained on data from two classes. Prediction is done by voting where each classifier gives
a prediction and the class which is most frequently predicted wins (“Max Wins”). This
method has been shown to produce robust results when used with SVMs (Hsu and Lin 2002a).
Although this suggests a higher number of support vector machines to train the overall CPU
time used is less compared to the one-against-all method since the problems are smaller and
the SVM optimization problem scales super-linearly.

Furthermore, SVMs can also produce class probabilities as output instead of class labels. This
is can done by an improved implementation (Lin, Lin, and Weng 2001) of Platt’s a posteriori
probabilities (Platt 2000) where a sigmoid function

P (y = 1 | f) =
1

1 + eAf+B
(8)

is fitted to the decision values f of the binary SVM classifiers, A and B being estimated
by minimizing the negative log-likelihood function. This is equivalent to fitting a logistic
regression model to the estimated decision values. To extend the class probabilities to the
multi-class case, all binary classifiers class probability output can be combined as proposed
in Wu, Lin, and Weng (2003).

In addition to these heuristics for extending a binary SVM to the multi-class problem, there
have been reformulations of the support vector quadratic problem that deal with more than
two classes. One of the many approaches for native support vector multi-class classification
is the one proposed in Crammer and Singer (2000), which we will refer to as ‘spoc-svc’. This
algorithm works by solving a single optimization problem including the data from all classes.
The primal formulation is:

minimize t({wn}, ξ) =
1
2

k∑
n=1

‖wn‖2 +
C

m

m∑
i=1

ξi

subject to 〈Φ(xi),wyi〉 − 〈Φ(xi),wn〉 ≥ bn
i − ξi (i = 1, . . . ,m) (9)

where bn
i = 1− δyi,n (10)

where the decision function is

argmaxn=1,...,k〈Φ(xi),wn〉 (11)

Details on performance and benchmarks on various approaches for multi-class classification
can be found in Hsu and Lin (2002b).
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2.2. Novelty detection

SVMs have also been extended to deal with the problem of novelty detection (or one-class
classification; see Schölkopf, Platt, Shawe-Taylor, Smola, and Williamson 1999; Tax and Duin
1999), where essentially an SVM detects outliers in a data set. SVM novelty detection works
by creating a spherical decision boundary around a set of data points by a set of support
vectors describing the sphere’s boundary. The primal optimization problem for support vector
novelty detection is the following:

minimize t(w, ξ, ρ) =
1
2
‖w‖2 − ρ +

1
mν

m∑
i=1

ξi

subject to 〈Φ(xi),w〉+ b ≥ ρ− ξi (i = 1, . . . ,m) (12)
ξi ≥ 0 (i = 1, . . . ,m).

The ν parameter is used to control the volume of the sphere and consequently the number of
outliers found. The value of ν sets an upper bound on the fraction of outliers found in the
data.

2.3. Regression

By using a different loss function called the ε-insensitive loss function ‖y−f(x)‖ε = max{0, ‖y−
f(x)‖ − ε}, SVMs can also perform regression. This loss function ignores errors that are
smaller than a certain threshold ε > 0 thus creating a tube around the true output. The
primal becomes:

minimize t(w, ξ) =
1
2
‖w‖2 +

C

m

m∑
i=1

(ξi + ξ∗i )

subject to (〈Φ(xi),w〉+ b)− yi ≤ ε− ξi (13)
yi − (〈Φ(xi),w〉+ b) ≤ ε− ξ∗i (14)
ξ∗i ≥ 0 (i = 1, . . . ,m)

We can estimate the accuracy of SVM regression by computing the scale parameter of a
Laplacian distribution on the residuals ζ = y − f(x), where f(x) is the estimated decision
function (Lin and Weng 2004).

The dual problems of the various classification, regression and novelty detection SVM formu-
lations can be found in the Appendix.

2.4. Kernel functions

As seen before, the kernel functions return the inner product between two points in a suitable
feature space, thus defining a notion of similarity, with little computational cost even in very
high-dimensional spaces. Kernels commonly used with kernel methods and SVMs in particular
include the following:
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• the linear kernel implementing the simplest of all kernel functions

k(x,x′) = 〈x,x′〉 (15)

• the Gaussian Radial Basis Function (RBF) kernel

k(x,x′) = exp(−σ‖x− x′‖2) (16)

• the polynomial kernel

k(x,x′) =
(
scale · 〈x,x′〉+ offset

)degree (17)

• the hyperbolic tangent kernel

k(x,x′) = tanh
(
scale · 〈x,x′〉+ offset

)
(18)

• the Bessel function of the first kind kernel

k(x,x′) =
Besseln(ν+1)(σ‖x− x′‖)

(‖x− x′‖)−n(ν+1)
(19)

• the Laplace Radial Basis Function (RBF) kenrel

k(x,x′) = exp(−σ‖x− x′‖) (20)

• the ANOVA radial basis kernel

k(x,x′) =

(
n∑

k=1

exp(−σ(xk − x′k)2)

)d

(21)

• the linear splines kernel in one dimension

k(x, x′) = 1 + xx′ min(x, x′)− x + x′

2
(min(x, x′)2 +

(min(x, x′)3)
3

(22)

and for the multidimensional case k(x,x′) =
∏n

k=1 k(xk, x′k).

The Gaussian and Laplace RBF and Bessel kernels are general-purpose kernels used when
there is no prior knowledge about the data. The linear kernel is useful when dealing with
large sparse data vectors as is usually the case in text categorization. The polynomial kernel
is popular in image processing and the sigmoid kernel is mainly used as a proxy for neural
networks. The splines and ANOVA RBF kernels typically perform well in regression problems.

2.5. Software

Support vector machines are currently used in a wide range of fields, from bioinformatics to
astrophysics. Thus, the existence of many SVM software packages comes as little surprise.
Most existing software is written in C or C++, such as the award winning libsvm (Chang and
Lin 2001), which provides a robust and fast SVM implementation and produces state of the
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art results on most classification and regression problems (Meyer, Leisch, and Hornik 2003),
SVMlight (Joachims 1999), SVMTorch (Collobert, Bengio, and Mariéthoz 2002), Royal Hol-
loway Support Vector Machines, (Gammerman, Bozanic, Schölkopf, Vovk, Vapnik, Bottou,
Smola, Watkins, LeCun, Saunders, Stitson, and Weston 2001), mySVM (Rüping 2004), and
M-SVM (Guermeur 2004). Many packages provide interfaces to MATLAB (The MathWorks
2005) (such as libsvm), and there are some native MATLAB toolboxes as well such as the
SVM and Kernel Methods Matlab Toolbox (Canu, Grandvalet, and Rakotomamonjy 2003)
or the MATLAB Support Vector Machine Toolbox (Gunn 1998) and the SVM toolbox for
Matlab (Schwaighofer 2005)

2.6. R software overview

The first implementation of SVM in R (R Development Core Team 2005) was introduced in
the e1071 (Dimitriadou, Hornik, Leisch, Meyer, and Weingessel 2005) package. The svm()
function in e1071 provides a rigid interface to libsvm along with visualization and parameter
tuning methods.

Package kernlab features a variety of kernel-based methods and includes a SVM method based
on the optimizers used in libsvm and bsvm (Hsu and Lin 2002c). It aims to provide a flexible
and extensible SVM implementation.

Package klaR (Roever, Raabe, Luebke, and Ligges 2005) includes an interface to SVMlight, a
popular SVM implementation that additionally offers classification tools such as Regularized
Discriminant Analysis.

Finally, package svmpath (Hastie 2004) provides an algorithm that fits the entire path of the
SVM solution (i.e., for any value of the cost parameter).

In the remainder of the paper we will extensively review and compare these four SVM imple-
mentations.

3. Data

Throughout the paper, we will use the following data sets accessible through R (see Table 1),
most of them originating from the UCI machine learning database (Blake and Merz 1998):

iris This famous (Fisher’s or Anderson’s) iris data set gives the measurements in centimeters
of the variables sepal length and width and petal length and width, respectively, for
50 flowers from each of 3 species of iris. The species are Iris setosa, versicolor, and
virginica. The data set is provided by base R.

spam A data set collected at Hewlett-Packard Labs which classifies 4601 e-mails as spam or
non-spam. In addition to this class label there are 57 variables indicating the frequency
of certain words and characters in the e-mail. The data set is provided by the kernlab
package.

musk This dataset in package kernlab describes a set of 476 molecules of which 207 are
judged by human experts to be musks and the remaining 269 molecules are judged to
be non-musks. The data has 167 variables which describe the geometry of the molecules.
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promotergene Promoters have a region where a protein (RNA polymerase) must make
contact and the helical DNA sequence must have a valid conformation so that the two
pieces of the contact region spatially align. The dataset in package kernlab contains
DNA sequences of promoters and non-promoters in a data frame with 106 observations
and 58 variables. The DNA bases are coded as follows: ‘a’ adenine, ‘c’ cytosine, ‘g’
guanine, and ‘t’ thymine.

Vowel Speaker independent recognition of the eleven steady state vowels of British English
using a specified training set of LPC derived log area ratios. The vowels are indexed by
integers 0 to 10. This dataset in package mlbench (Leisch and Dimitriadou 2001) has
990 observations on 10 independent variables.

DNA in package mlbench consists of 3,186 data points (splice junctions). The data points
are described by 180 indicator binary variables and the problem is to recognize the 3
classes (‘ei’, ‘ie’, neither), i.e., the boundaries between exons (the parts of the DNA
sequence retained after splicing) and introns (the parts of the DNA sequence that are
spliced out).

BreastCancer in package mlbench is a data frame with 699 observations on 11 variables,
one being a character variable, 9 being ordered or nominal, and 1 target class. The
objective is to identify each of a number of benign or malignant classes.

BostonHousing Housing data in package mlbench for 506 census tracts of Boston from the
1970 census. There are 506 observations on 14 variables.

B3 German Bussiness Cycles from 1955 to 1994 in package klaR. A data frame with 157
observations on the following 14 variables.

#AttributesDataset #Examples
b c m cl

Class Distribution (%)

iris 150 5 3 33.3/33.3/33.3
spam 4601 57 2 39.40/60.59
musk 476 166 2 42.99 / 57.00
promotergene 106 57 2 50.00 / 50.00
Vowel 990 1 9 10 10.0/10.0/...
DNA 3186 180 3 24.07/24.07/51.91
BreastCancer 699 9 2 34.48 / 65.52
BostonHousing 506 1 12 (regression)
B3 506 13 4 37.57/15.28/29.93/17.19

Table 1: The data sets used throughout the paper. Legend: b=binary, c=categorical,
m=metric, cl = number of classes.

4. ksvm in kernlab

Package kernlab (Karatzoglou, Smola, Hornik, and Zeileis 2004) aims to provide the R user
with basic kernel functionality (e.g., like computing a kernel matrix using a particular kernel),
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along with some utility functions commonly used in kernel-based methods like a quadratic
programming solver, and modern kernel-based algorithms based on the functionality that the
package provides. It also takes advantage of the inherent modularity of kernel-based methods,
aiming to allow the user to switch between kernels on an existing algorithm and even create
and use own kernel functions for the various kernel methods provided in the package.
kernlab uses R’s new object model described in “Programming with Data” (Chambers 1998)
which is known as the S4 class system and is implemented in package methods. In contrast
to the older S3 model for objects in R, classes, slots, and methods relationships must be
declared explicitly when using the S4 system. The number and types of slots in an instance
of a class have to be established at the time the class is defined. The objects from the class
are validated against this definition and have to comply to it at any time. S4 also requires
formal declarations of methods, unlike the informal system of using function names to identify
a certain method in S3. Package kernlab is available from CRAN (http://CRAN.R-project.
org/) under the GPL license.
The ksvm() function, kernlab’s implementation of SVMs, provides a standard formula inter-
face along with a matrix interface. ksvm() is mostly programmed in R but uses, through
the .Call interface, the optimizers found in bsvm and libsvm (Chang and Lin 2001) which
provide a very efficient C++ version of the Sequential Minimization Optimization (SMO).
The SMO algorithm solves the SVM quadratic problem (QP) without using any numerical
QP optimization steps. Instead, it chooses to solve the smallest possible optimization prob-
lem involving two elements of αi because the must obey one linear equality constraint. At
every step, SMO chooses two αi to jointly optimize and finds the optimal values for these αi

analytically, thus avoiding numerical QP optimization, and updates the SVM to reflect the
new optimal values.
The SVM implementations available in ksvm() include the C-SVM classification algorithm
along with the ν-SVM classification. Also included is a bound constraint version of C classi-
fication (C-BSVM) which solves a slightly different QP problem (Mangasarian and Musicant
1999, including the offset β in the objective function) using a modified version of the TRON
(Lin and More 1999) optimization software. For regression, ksvm() includes the ε-SVM regres-
sion algorithm along with the ν-SVM regression formulation. In addition, a bound constraint
version (ε-BSVM) is provided, and novelty detection (one-class classification) is supported.
For classification problems which include more then two classes (multi-class case) two options
are available: a one-against-one (pairwise) classification method or the native multi-class
formulation of the SVM (spoc-svc) described in Section 2. The optimization problem of the
native multi-class SVM implementation is solved by a decomposition method proposed in Hsu
and Lin (2002c) where optimal working sets are found (that is, sets of αi values which have
a high probability of being non-zero). The QP sub-problems are then solved by a modified
version of the TRON optimization software.
The ksvm() implementation can also compute class-probability output by using Platt’s prob-
ability methods (Equation 8) along with the multi-class extension of the method in Wu et al.
(2003). The prediction method can also return the raw decision values of the support vector
model:

> library("kernlab")

> data("iris")

> irismodel <- ksvm(Species ~ ., data = iris,

http://CRAN.R-project.org/
http://CRAN.R-project.org/
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+ type = "C-bsvc", kernel = "rbfdot",

+ kpar = list(sigma = 0.1), C = 10,

+ prob.model = TRUE)

> irismodel

Support Vector Machine object of class "ksvm"

SV type: C-bsvc (classification)
parameter : cost C = 10

Gaussian Radial Basis kernel function.
Hyperparameter : sigma = 0.1

Number of Support Vectors : 32
Training error : 0.02
Probability model included.

> predict(irismodel, iris[c(3, 10, 56, 68,

+ 107, 120), -5], type = "probabilities")

setosa versicolor virginica
[1,] 0.986432820 0.007359407 0.006207773
[2,] 0.983323813 0.010118992 0.006557195
[3,] 0.004852528 0.967555126 0.027592346
[4,] 0.009546823 0.988496724 0.001956452
[5,] 0.012767340 0.069496029 0.917736631
[6,] 0.011548176 0.150035384 0.838416441

> predict(irismodel, iris[c(3, 10, 56, 68,

+ 107, 120), -5], type = "decision")

[,1] [,2] [,3]
[1,] -1.460398 -1.1910251 -3.8868836
[2,] -1.357355 -1.1749491 -4.2107843
[3,] 1.647272 0.7655001 -1.3205306
[4,] 1.412721 0.4736201 -2.7521640
[5,] 1.844763 1.0000000 1.0000019
[6,] 1.848985 1.0069010 0.6742889

ksvm allows for the use of any valid user defined kernel function by just defining a function
which takes two vector arguments and returns its Hilbert Space dot product in scalar form.

> k <- function(x, y) {

+ (sum(x * y) + 1) * exp(0.001 * sum((x -

+ y)^2))

+ }
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> class(k) <- "kernel"

> data("promotergene")

> gene <- ksvm(Class ~ ., data = promotergene,

+ kernel = k, C = 10, cross = 5)

> gene

Support Vector Machine object of class "ksvm"

SV type: C-svc (classification)
parameter : cost C = 10

Number of Support Vectors : 66
Training error : 0
Cross validation error : 0.141558

The implementation also includes the following computationally efficiently implemented ker-
nels: Gaussian RBF, polynomial, linear, sigmoid, Laplace, Bessel RBF, spline, and ANOVA
RBF.
N -fold cross-validation of an SVM model is also supported by ksvm, and the training error is
reported by default.
The problem of model selection is partially addressed by an empirical observation for the
popular Gaussian RBF kernel (Caputo, Sim, Furesjo, and Smola 2002), where the optimal
values of the width hyper-parameter σ are shown to lie in between the 0.1 and 0.9 quantile of
the ‖x− x′‖2 statistics. The sigest() function uses a sample of the training set to estimate
the quantiles and returns a vector containing the values of the quantiles. Pretty much any
value within this interval leads to good performance.
The object returned by the ksvm() function is an S4 object of class ksvm with slots containing
the coefficients of the model (support vectors), the parameters used (C, ν, etc.), test and
cross-validation error, the kernel function, information on the problem type, the data scaling
parameters, etc. There are accessor functions for the information contained in the slots of the
ksvm object.
The decision values of binary classification problems can also be visualized via a contour plot
with the plot() method for the ksvm objects. This function is mainly for simple problems.
An example is shown in Figure 1.

> x <- rbind(matrix(rnorm(120), , 2), matrix(rnorm(120,

+ mean = 3), , 2))

> y <- matrix(c(rep(1, 60), rep(-1, 60)))

> svp <- ksvm(x, y, type = "C-svc", kernel = "rbfdot",

+ kpar = list(sigma = 2))

> plot(svp)

5. svm in e1071

Package e1071 provides an interface to libsvm (Chang and Lin 2001, current version: 2.8),
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Figure 1: A contour plot of the fitted decision values for a simple binary classification problem.

complemented by visualization and tuning functions. libsvm is a fast and easy-to-use imple-
mentation of the most popular SVM formulations (C and ν classification, ε and ν regression,
and novelty detection). It includes the most common kernels (linear, polynomial, RBF, and
sigmoid), only extensible by changing the C++ source code of libsvm. Multi-class classifica-
tion is provided using the one-against-one voting scheme. Other features include the computa-
tion of decision and probability values for predictions (for both classification and regression),
shrinking heuristics during the fitting process, class weighting in the classification mode, han-
dling of sparse data, and the computation of the training error using cross-validation. libsvm
is distributed under a very permissive, BSD-like licence.
The R implementation is based on the S3 class mechanisms. It basically provides a training
function with standard and formula interfaces, and a predict() method. In addition, a
plot() method visualizing data, support vectors, and decision boundaries if provided. Hyper-
parameter tuning is done using the tune() framework in e1071 performing a grid search over
specified parameter ranges.
The sample session starts with a C classification task on the iris data, using the radial basis
function kernel with fixed hyper-parameters C and γ:

> library("e1071")

> model <- svm(Species ~ ., data = iris_train,

+ method = "C-classification", kernel = "radial",

+ cost = 10, gamma = 0.1)

> summary(model)

Call:
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svm(formula = Species ~ ., data = iris_train, method = "C-classification",
+ kernel = "radial", cost = 10, gamma = 0.1)

Parameters:
SVM-Type: C-classification

SVM-Kernel: radial
cost: 10
gamma: 0.1

Number of Support Vectors: 27

( 12 12 3 )

Number of Classes: 3

Levels:
setosa versicolor virginica

We can visualize a 2-dimensional projection of the data with highlighting classes and support
vectors (see Figure 2):

> plot(model, iris_train, Petal.Width ~

+ Petal.Length, slice = list(Sepal.Width = 3,

+ Sepal.Length = 4))

Predictions from the model, as well as decision values from the binary classifiers, are obtained
using the predict() method:

> (pred <- predict(model, head(iris), decision.values = TRUE))

[1] setosa setosa setosa setosa setosa setosa
Levels: setosa versicolor virginica

> attr(pred, "decision.values")

virginica/versicolor virginica/setosa
1 -3.833133 -1.156482
2 -3.751235 -1.121963
3 -3.540173 -1.177779
4 -3.491439 -1.153052
5 -3.657509 -1.172285
6 -3.702492 -1.069637
versicolor/setosa

1 -1.393419
2 -1.279886
3 -1.456532
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Figure 2: SVM plot visualizing the iris data. Support vectors are shown as ‘X’, true classes
are highlighted through symbol color, predicted class regions are visualized using colored
background.

4 -1.364424
5 -1.423417
6 -1.158232

Probability values can be obtained in a similar way.

In the next example, we again train a classification model on the spam data. This time,
however, we will tune the hyper-parameters on a subsample using the tune framework of
e1071:

> tobj <- tune.svm(type ~ ., data = spam_train[1:300,

+ ], gamma = 10^(-6:-3), cost = 10^(1:2))

> summary(tobj)

Parameter tuning of ‘svm’:

- sampling method: 10-fold cross validation

- best parameters:
gamma cost
0.001 10
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- best performance: 0.1233333

- Detailed performance results:
gamma cost error

1 1e-06 10 0.4133333
2 1e-05 10 0.4133333
3 1e-04 10 0.1900000
4 1e-03 10 0.1233333
5 1e-06 100 0.4133333
6 1e-05 100 0.1933333
7 1e-04 100 0.1233333
8 1e-03 100 0.1266667

tune.svm() is a convenience wrapper to the tune() function that carries out a grid search
over the specified parameters. The summary() method on the returned object indicates the
misclassification rate for each parameter combination and the best model. By default, the
error measure is computed using a 10-fold cross validation on the given data, but tune()
offers several alternatives (e.g., separate training and test sets, leave-one-out-error, etc.). In
this example, the best model in the parameter range is obtained using C = 10 and γ = 0.001,
yielding a misclassification error of 12.33%. A graphical overview on the tuning results (that
is, the error landscape) can be obtained by drawing a contour plot (see Figure 3):

> plot(tobj, transform.x = log10, xlab = expression(log[10](gamma)),

+ ylab = "C")

Using the best parameters, we now train our final model. We estimate the accuracy in two
ways: by 10-fold cross validation on the training data, and by computing the predictive
accuracy on the test set:

> bestGamma <- tobj$best.parameters[[1]]

> bestC <- tobj$best.parameters[[2]]

> model <- svm(type ~ ., data = spam_train,

+ cost = bestC, gamma = bestGamma, cross = 10)

> summary(model)

Call:
svm(formula = type ~ ., data = spam_train, cost = bestC, gamma = bestGamma,
+ cross = 10)

Parameters:
SVM-Type: C-classification

SVM-Kernel: radial
cost: 10
gamma: 0.001

Number of Support Vectors: 313



16 Support Vector Machines in R

0.15

0.20

0.25

0.30

0.35

0.40

−6.0 −5.5 −5.0 −4.5 −4.0 −3.5 −3.0

20

40

60

80

100

Performance of ‘svm'

log10(γ)

C

Figure 3: Contour plot of the error landscape resulting from a grid search on a hyper-
parameter range.

( 162 151 )

Number of Classes: 2

Levels:
nonspam spam

10-fold cross-validation on training data:

Total Accuracy: 91.6
Single Accuracies:
94 91 92 90 91 91 92 90 92 93

> pred <- predict(model, spam_test)

> (acc <- table(pred, spam_test$type))

pred nonspam spam
nonspam 2075 196
spam 115 1215

> classAgreement(acc)
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$diag
[1] 0.9136351

$kappa
[1] 0.8169207

$rand
[1] 0.8421442

$crand
[1] 0.6832857

6. svmlight in klaR

Package klaR (Roever et al. 2005) includes utility functions for classification and visualization,
and provides the svmlight() function which is a fairly simple interface to the SVMlight
package. The svmlight() function in klaR is written in the S3 object system and provides
a formula interface along with standard matrix, data frame, and formula interfaces. The
SVMlight package is available only for non-commercial use, and the installation of the package
involves placing the SVMlight binaries in the path of the operating system. The interface
works by using temporary text files where the data and parameters are stored before being
passed to the SVMlight binaries.
SVMlight utilizes a special active set method (Joachims 1999) for solving the SVM QP prob-
lem where q variables (the active set) are selected per iteration for optimization. The selection
of the active set is done in a way which maximizes the progress towards the minimum of the
objective function. At each iteration a QP subproblem is solved using only the active set until
the final solution is reached.
The klaR interface function svmlight() supports the C-SVM formulation for classification
and the ε-SVM formulation for regression. SVMlight uses the one-against-all method for
multi-class classification where k classifiers are trained. Compared to the one-against-one
method, this requires usually less binary classifiers to be built but the problems each classifier
has to deal with are bigger.
The SVMlight implementation provides the Gaussian, polynomial, linear, and sigmoid kernels.
The svmlight() interface employs a character string argument to pass parameters to the
SVMlight binaries. This allows direct access to the feature-rich SVMlight and allows, e.g.,
control of the SVM parameters (cost, ε), the choice of the kernel function and the hyper-
parameters, the computation of the leave-one-out error, and the control of the verbosity level.
The S3 object returned by the svmlight() function in klaR is of class svmlight and is a list
containing the model coefficients along with information on the learning task, like the type
of problem, and the parameters and arguments passed to the function. The svmlight object
has no print() or summary() methods. The predict() method returns the class labels in
case of classification along with a class membership value (class probabilities) or the decision
values of the classifier.

> library("klaR")
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> data("B3")

> Bmod <- svmlight(PHASEN ~ ., data = B3,

+ svm.options = "-c 10 -t 2 -g 0.1 -v 0")

> predict(Bmod, B3[c(4, 9, 30, 60, 80, 120),

+ -1])

$class
[1] 3 3 4 3 4 1
Levels: 1 2 3 4

$posterior
1 2 3 4

[1,] 0.09633177 0.09627103 0.71112031 0.09627689
[2,] 0.09628235 0.09632512 0.71119794 0.09619460
[3,] 0.09631525 0.09624314 0.09624798 0.71119362
[4,] 0.09632530 0.09629393 0.71115614 0.09622463
[5,] 0.09628295 0.09628679 0.09625447 0.71117579
[6,] 0.71123818 0.09627858 0.09620351 0.09627973

7. svmpath

The performance of the SVM is highly dependent on the value of the regularization param-
eter C, but apart from grid search, which is often computationally expensive, there is little
else a user can do to find a value yielding good performance. Although the ν-SVM algorithm
partially addresses this problem by reformulating the SVM problem and introducing the ν
parameter, finding a correct value for ν relies on at least some knowledge of the expected
result (test error, number of support vectors, etc.).

Package svmpath (Hastie 2004) contains a function svmpath() implementing an algorithm
which solves the C-SVM classification problem for all the values of the regularization cost
parameter λ = 1/C (Hastie, Rosset, Tibshirani, and Zhu 2004). The algorithm exploits the
fact that the loss function is piecewise linear and thus the parameters (coefficients) α(λ)
of the SVM model are also piecewise linear as functions of the regularization parameter λ.
The algorithm solves the SVM problem for all values of the regularization parameter with
essentially a small multiple (≈ 3) of the computational cost of fitting a single model.

The algorithm works by starting with a high value of λ (high regularization) and tracking the
changes to the model coefficients α as the value of λ is decreased. When λ decreases, ||α||
and hence the width of the margin decrease, and points move from being inside to outside
the margin. Their corresponding coefficients αi change from αi = 1 when they are inside the
margin to αi = 0 when outside. The trajectories of the αi are piecewise linear in λ and by
tracking the break points all values in between can be found by simple linear interpolation.

The svmpath() implementation in R currently supports only binary C classification. The
function must be used through a S3 matrix interface where the y label must be +1 or −1.
Similarly to ksvm(), svmpath() allows the use of any user defined kernel function, but in its
current implementation requires the direct computation of full kernel matrices, thus limiting
the size of problems svmpath() can be used on since the full m×m kernel matrix has to be
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computed in memory. The implementation comes with the Gaussian RBF and polynomial
kernel as built-in kernel functions and also provides the user with the option of using a
precomputed kernel matrix K.

The function call returns an object of class svmpath which is a list containing the model
coefficients (αi) for the break points along with the offsets and the value of the regularization
parameter λ = 1/C at the points. Also included is information on the kernel function and its
hyper-parameter. The predict() method for svmpath objects returns the decision values, or
the binary labels (+1,−1) for a specified value of the λ = 1/C regularization parameter. The
predict() method can also return the model coefficients α for any value of the λ parameter.

> library("svmpath")

> data("svmpath")

> attach(balanced.overlap)

> svmpm <- svmpath(x, y, kernel.function = radial.kernel,

+ param.kernel = 0.1)

> predict(svmpm, x, lambda = 0.1)

[,1]
[1,] -0.8399810
[2,] -1.0000000
[3,] -1.0000000
[4,] -1.0000000
[5,] 0.1882592
[6,] -2.2363430
[7,] 1.0000000
[8,] -0.2977907
[9,] 0.3468992
[10,] 0.1933259
[11,] 1.0580215
[12,] 0.9309218

> predict(svmpm, lambda = 0.2, type = "alpha")

$alpha0
[1] -0.3809953

$alpha
[1] 1.000000e+00 1.000000e+00 9.253461e-01
[4] 1.000000e+00 1.000000e+00 1.110223e-16
[7] 1.000000e+00 1.000000e+00 1.000000e+00
[10] 1.000000e+00 1.110223e-16 9.253461e-01

$lambda
[1] 0.2
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8. Benchmarking

In the following we compare the four SVM implementations in terms of training time. In this
comparison we only focus on the actual training time of the SVM excluding the time needed
for estimating the training error or the cross-validation error. In implementations which
scale the data (ksvm(), svm()) we include the time needed to scale the data. We include
both binary and multi-class classification problems as well as a few regression problems. The
training is done using a Gaussian kernel where the hyper-parameter was estimated using the
sigest() function in kernlab, which estimates the 0.1 and 0.9 quantiles of ‖x − x′‖2. The
data was scaled to unit variance and the features for estimating the training error and the
fitted values were turned off and the whole data set was used for the training. The mean
value of 10 runs is given in Table 2; we do not report the variance since it was practically 0
in all runs. The runs were done with version 0.6-2 of kernlab, version 1.5-11 of e1071, version
0.9 of svmpath, and version 0.4-1 of klaR.

Table 2 contains the training times for the SVM implementations on the various datasets.
ksvm() and svm() seem to perform on a similar level in terms of training time with the
svmlight() function being significantly slower. When comparing svmpath() with the other
implementations, one has to keep in mind that it practically estimates the SVM model coeffi-
cients for the whole range of the cost parameter C. The svmlight() function seems to suffer
from the fact that the interface is based on reading and writing temporary text files as well
as from the optimization method (chunking) used from the SVMlight software which in these
experiments does not seem to perform as well as the SMO implementation in libsvm. The
svm() in e1071 and the ksvm() function in kernlab seem to be on par in terms of training
time performance with the svm() function being slightly faster on multi-class problems.

ksvm() svm() svmlight() svmpath()
(kernlab) (e1071) (klaR) (svmpath)

spam 18.50 17.90 34.80 34.00
musk 1.40 1.30 4.65 13.80
Vowel 1.30 0.30 21.46 NA
DNA 22.40 23.30 116.30 NA
BreastCancer 0.47 0.36 1.32 11.55
BostonHousing 0.72 0.41 92.30 NA

Table 2: The training times for the SVM implementations on different datasets in seconds.
Timings where done on an AMD Athlon 1400 Mhz computer running Linux.

9. Conclusions

Table 3 provides a quick overview of the four SVM implementations. ksvm() in kernlab is
a flexible SVM implementation which includes the most SVM formulations and kernels and
allows for user defined kernels as well. It provides many useful options and features like a
method for plotting, class probabilities output, cross validation error estimation, automatic
hyper-parameter estimation for the Gaussian RBF kernel, but lacks a proper model selection
tool. The svm() function in e1071 is a robust interface to the award winning libsvm SVM
library and includes a model selection tool, the tune() function, and a sparse matrix interface
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ksvm() svm() svmlight() svmpath()
(kernlab) (e1071) (klaR) (svmpath)

Formulations C-SVC,
ν-SVC,
C-BSVC,
spoc-SVC,
one-SVC, ε-
SVR, ν-SVR,
ε-BSVR

C-SVC, ν-
SVC, one-
SVC, ε-SVR,
ν-SVR

C-SVC, ε-SVR binary C-SVC

Kernels Gaussian,
polynomial,
linear, sig-
moid, Laplace,
Bessel, Anova,
Spline

Gaussian,
polynomial,
linear, sigmoid

Gaussian,
polynomial,
linear, sigmoid

Gaussian,
polynomial

Optimizer SMO, TRON SMO chunking NA
Model Selection hyper-

parameter
estimation
for Gaussian
kernels

grid-search
function

NA NA

Data formula, ma-
trix

formula, ma-
trix, sparse
matrix

formula, ma-
trix

matrix

Interfaces .Call .C temporary files .C
Class System S4 S3 none S3

Extensibility custom kernel
functions

NA NA custom kernel
functions

Add-ons plot function plot functions,
accuracy

NA plot function

License GPL GPL non-
commercial

GPL

Table 3: A quick overview of the SVM implementations.
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along with a plot() method and features like accuracy estimation and class-probabilities
output, but does not give the user the flexibility of choosing a custom kernel. svmlight() in
package klaR provides a very basic interface to SVMlight and has many drawbacks. It does
not exploit the full potential of SVMlight and seems to be quite slow. The SVMlight license
is also quite restrictive and in particular only allows non-commercial usage. svmpath() does
not provide many features but can nevertheless be used as an exploratory tool, in particular
for locating a proper value for the regularization parameter λ = 1/C.

The existing implementations provide a relatively wide range of features and options but the
implementations can be extended by incorporating new features which arise in the ongoing
research in SVM. One useful extension would allowing to weight the observations (Lin and
Wang 1999) which is currently not supported by any of the implementations. Other exten-
sions include the return of the original predictor coefficients in the case of the linear kernel
(again not supported by any of the four implementations) and an interface and kernel for
doing computations directly on structured data like string trees for text mining applications
(Watkins 2000).
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A. SVM formulations

A.1. ν-SVM formulation for classification

The primal quadratic programming problem for the ν-SVM is the following:

minimize t(w, ξ, ρ) =
1
2
‖w‖2 − νρ +

1
m

m∑
i=1

ξi

subject to yi(〈Φ(xi),w〉+ b) ≥ ρ− ξi (i = 1, . . . ,m) (23)
ξi ≥ 0 (i = 1, . . . ,m), ρ ≥ 0.

The dual is of the form:

maximize W (α) = −1
2

m∑
i,j=1

αiαjyiyjk(xi, xj)

subject to 0 ≤ αi ≤
1
m

(i = 1, . . . ,m) (24)
m∑

i=1

αiyi = 0

m∑
i=1

αi ≥ ν

A.2. spoc-SVM for classification

The dual of the Crammer and Singer multi-class SVM problem is of the form:

maximize W (α) =
l∑

i=1

αiεi −
1
2

m∑
i,j=1

αiαjyiyjk(xi, xj)

subject to 0 ≤ αi ≤ C (i = 1, . . . ,m) (25)
k∑

m=1

αm
i = 0, (i = 1, . . . , l)

m∑
i=1

αi ≥ ν

A.3. Bound constraint C-SVM for classification

The primal form of the bound constraint C-SVM formulation is:
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minimize t(w, ξ) =
1
2
‖w‖2 +

1
2
β2 +

C

m

m∑
i=1

ξi

subject to yi(〈Φ(xi),w〉+ b) ≥ 1− ξi (i = 1, . . . ,m) (26)
ξi ≥ 0 (i = 1, . . . ,m)

The dual form of the bound constraint C-SVM formulation is:

maximize W (α) =
m∑

i=1

αi −
1
2

m∑
i,j=1

αiαj(yiyj + k(xi, xj))

subject to 0 ≤ αi ≤
C

m
(i = 1, . . . ,m) (27)

m∑
i=1

αiyi = 0.

A.4. SVM for regression

The dual form of the ε-SVM regression is:

maximizeα ∈ Rm =


−1

2

∑m
i,j=1(α

∗
i − αi)(α∗i − αi)k(xi, xj)

−ε
∑m

i=1(α
∗
i + αi) +

∑m
i=1 yi(α∗i − αi)

(28)

subject to
m∑

i=1

(αi − α∗i ) = 0 and ai, a
∗
i ∈ [0, C/m]

The primal form of the ν-SVM formulation is:

minimize t(w, ξ∗, ε) =
1
2
‖w‖2 +

C

νε
+

1
m

m∑
i=1

(ξi + ξ∗i )

subject to (〈Φ(xi),w〉+ b)− yi ≥ ε− ξi (i = 1, . . . ,m) (29)
yi − (〈Φ(xi),w〉+ b) ≥ ε− ξ∗i (i = 1, . . . ,m) (30)
ξ∗i ≥ 0, ε ≥ 0, (i = 1, . . . ,m)

The dual form of the ν-SVM formulation is:

maximize W (α∗) =
m∑

i=1

(α∗i − αi)yi −
1
2

m∑
i,j=1

(α∗i − αi)(α∗j − αj)k(xi, xj)

subject to
m∑

i=1

(αi − α∗i ) (31)
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α∗i ∈
[
0,

C

m

]
,

m∑
i=1

(αi + α∗i ) ≤ Cν

A.5. SVM novelty detection

The dual form of the SVM QP for novelty detection is:

minimize W (α) =
∑
i,j

αiαjk(xi, xj)

subject to 0 ≤ αi ≤
1

νm
(i = 1, . . . ,m) (32)∑

i

αi = 1
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