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ABSTRACT

Mel-Frequency Cepstral Coefficients (MFCCs) are widely used for a variety of

problems in signal processing. There can be limitations to this approach when you

attempt to model something which cannot be easily discriminated with the human

ear. This thesis investigates the results that can be obtained with a more objective

frequency scale function, which will be called NMFCC. Techniques utilized include:

Support Vector Machines (SVMs), autocorrelation, NMFCC, binary classification,

and regression analysis. All programming for this thesis was done for the R statisti-

cal package.

Results in the discrimination problem between four computer keys were used

as a baseline to assess the success of the NMFCCs. The discrimination algorithm’s

accuracy was increased by approximately 30% with the use of the NMFCCs.

Each problem has a different family of characteristic frequencies. The scale im-

posed can either obfuscate or illuminate them. While these results do not prove that

objective frequency scale functions are superior to the traditional MFCCs, they pro-

vide an example where the NMFCCs reveal more important characteristics than the

MFCCs.
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1 Origin of the MFCCs

One of the challenges in audio and visual analysis is simply to find a method

to deal with the sheer size of the dataset. Humans have been very successful in

performing discrimination for these kinds of problems: both in accuracy and speed.

Consequentially, many techniques directed at understanding such phenomena have

been developed to mimic human physiology.

At first, it may not be clear that characteristic feature extraction from the raw

data is necessary. Humans don’t record a list of amplitudes when we hear a sound,

so we’re not aware of the volume of data encoded in sound. For standard sampling

rates, the text file of raw amplitudes associated with 30 seconds of sound can be over

a gigabyte in size. Not only does our ear filter the sound significantly, but our brain

also passes the information through filters as well. When standard speech is passed

through even simple audio filters, it can become unrecognizable. However, when the

listener is told what is being said before hand, they often become able to hear it. This

is an example of how the brain’s expectations place filters on auditory data. More

than this though, the information arriving at the brain has already been cut down

by the ear. This is supported by both anatomical and physiological reasons as well

as experimental evidence relating to the perceptibility of slight differences in sound

frequencies.

The human ear generally consists of three sections: outer, middle, and inner. See

Figure 1 . For the purpose at hand, the inner is the most important. Sound waves are

collected in the outer ear and channeled in through the middle ear. They enter the

inner ear via the oval window. The cochlea, located in the inner ear, is essentially the

auditory feature extractor for the human body. Figure 2 gives a frequency-location

breakdown along the basilar membrane. The amplitude of a wave increases as it
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moves along the tube until it hits its maximum. At this point it decays rapidly.

Figure 1: The Human Ear

Figure 2: Basilar Membrane

We are able to perceive sounds through the use of nerves located throughout the

basilar membrane sense this location and the intensity at it. The idea is basically that

there are holes between our ability to determine precise location. Just as a mosquito

can land on your arm without you feeling it, we may be unable to precisely determine

the exact location at which a wave begins to decay along the basilar membrane. As a

result, our ability to distinguish between sounds in these regions may be diminished

or even non-existent. This phenomenon is characterized by considering critical bands

(centered at critical frequencies) over which we are unable to tell one frequency from

another.
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2 Construction of the MFCCs

The MFCCs are based on the aforementioned properties of the human auditory

feature extraction process. The intensity function for the Mel scale is:

M(f) = 1125 · ln
(

1 +
f

700

)

Figure 3: Mel Intensity & Critical Bands

Sampling uniformly from the Mel scale and mapping down to the axis yields the

critical bands and frequencies. MFCCs attempt to mimic the filtering process of the

ear by combining the energy within critical bands. Naturally, this filtering process

works well for the purpose of speech processing; however, MFCCs are sometimes ap-

plied in more abstract problems.

More explicitly, the MFCCs are extracted from the signal by first converting it

into frequencies using Short-time Fourier Transforms (STFTs). STFTs are FTs over

incremental windows which cover the whole signal. They are of them form e−i2πk.

These results are stored in a matrix which will be denoted [STFTs]. The intensity

function, desired number of coefficients, and frequency overlapping are used to define

the [Scaling] matrix. [STFTs] and [Scaling] are composed by matrix multiplica-

tion to combine the energy over respective critical bands. The result is then logged

and negated to extract the exponents, and composed with the inverse discrete cosine
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transform [IDCT ]. The IDCT can be interpreted as an inverse FT. It then becomes

clear that this step essentially undoes the transformation of the signal into frequencies

using FTs from the beginning of the process.

−log ([STFTs]x[Scaling]) x[IDCT ]

Figure 4: Mel Decomposition of a Signal
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3 Auditory Feature Extraction on a Computer

Much like the human ear, computers acquire sound information from their en-

vironment by evaluating changes in air pressure induced by a sound wave. The

mechanical analog to the ear’s oval window is the microphone’s elastic membrane. It

fluctuates back and forth as a sound wave compresses it. By measuring the amount of

compression, a computer is able to obtain a list of amplitudes at discrete times which

represent the sound. The frequency of the compression is in fact identical to the fre-

quency of the corresponding sound, and the square of the pressure is proportional to

the sound’s intensity. The result being that a sound wave can be completely charac-

terized simply by measuring fluctuations in the pressure induced along the membrane.

It is important to note that sound waves are continuous, however we are only

able to measure them discretely. This can potentially lead to some problems. As

stated previously, the FT of the data is typically interpreted as yielding its frequency

components, but the discrete nature by which we sample the data can actually obscure

the true frequencies. The signal which is reconstructed from these samples need not

necessarily be identical to the original wave. This behavior is referred to as aliasing.

For an illustration of this effect, see figure 5.

Figure 5: Aliasing
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In fact, there are an infinite number of possible sine curves that can generate

the same regularly sampled data points. There are several ways in which aliasing can

be reduced. Clearly, a larger sampling rate reduces aliasing, since the reconstructed

function has to agree with the true function at the end points of the sampled intervals.

Additionally, the algorithm by which the frequencies are reconstructed can influence

how profound the effects of aliasing are. This issue wasn’t investigated in great detail

for this thesis; however, keyboard strokes are hardly ordinary signals. It would be

interesting to see if improving the characteristic frequencies we attribute to each signal

by addressing the issue of aliasing could reveal more unique features for different keys.
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4 MFCCs in Action

MFCCs have been widely applied to problems everywhere from speech recogni-

tion to analyzing mechanically produced signals. They are often used to address the

problem of music genre classification. They were shown to be highly successful for

this problem in [4]. MFCCs are also used for problems with more abstract sounds.

They were suggested as the best method of characteristic feature extraction for dis-

crimination of computer keyboard emanations by [1] and [2]. They were also used

in [3], to discriminate keyboard key strokes with SVMs. For the A, L, Q, and P

keys, [3] was able to attain an accuracy of 65.56% using MFCCs. The implications

of using MFCCs are explored in reference to this type of problem, and NMFCCs are

developed in an attempt to extract features which are more useful for discrimination.

The results from [3] will be used in the remainder of this thesis as a baseline which

NMFCCs will be compared to.

Results must be interpreted in the context of the algorithm used to obtain them.

The following section describes the approach used in [3] for the four key classification

problem. It is not necessary for the theory of MFCCs and NMFCCs, and can be tem-

porarily skipped, if the reader wishes to continue developing them from a theoretical

stand point.

7
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5 The Four Key Classification Problem

The training data set consists of 50 strokes of each of the A, L, Q, and P keys.

The key stroke signals are first isolated in the sound file, and then two sets of features

are extracted from them: autocorrelation coefficients and MFCCs. For each key,

65 autocorrelation coefficients are taken with lags ranging from 2 to 66. This is

augmented by a random number of MFCCs determined by 7 tuning parameters.

This matrix of features will be referred to as Xtraining. Furthermore, the true labels

for the training set will be denoted Ytraining. The SVM then learns the classification

rule for {Xtraining, Ytraining}. It finds this rule subject to the following constraints:

1. SVM-Type: C-classification

2. SVM-Kernel: radial

The discrimination rule is used on the features of the test data, Xtest, to generate

predicted labels Ypredicted. The accuracy of the discrimination rule is then evaluated

by comparing the true and predicted labels, Ytest, and Ypredicted. More explicitly, Ytest

is the following 90x1 matrix of labels:

> ytest =c("L", "A", "A", "L", "A", "L", "A", "A", "A", "L",

+ "L", "L", "L", "L", "L", "A", "A", "A", "A",

+ "A", "L", "A", "A", "L", "A", "A", "A", "L",

+ "A", "L", "L", "A", "A", "A", "A", "L", "A",

+ "L", "L", "A", "L", "A", "L", "A", "L","P","Q","Q","Q",

+ "Q","Q","Q","Q","P","P","Q","Q","Q",

+ "Q","Q","Q","P","P","P","P","P","P","Q","Q","Q",

+ "Q","Q","Q","P","Q","Q","Q","Q","P","Q","P","Q",

+ "P","Q","P","P","P","P","P","Q")
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The discrimination was done with three binary decisions:

1. A against not A.

2. L against not L in what was not classified as an A in the first step.

3. Q against not Q in what was not classified as an L in the second step.

4. P is classified as whatever is not classified as Q in the third step.

Each step of the binary classification behaves as described above. More precisely,

each binary classification step goes through the below process:

A against not A:

1. Let 0 denote “not A.”

2. Define a new set of labels for the training data, YAtraining
which contains only

A’s and 0’s.

3. Train the SVM on {Xtraining, YAtraining
}.

4. Compare the learned decision rule with YAtest which contains only A’s and 0’s.

5. Remove everything classified as an A in this binary decision step.

6. Move on to the L against not L classification.

The total accuracy of the algorithm is defined as the percentage of total keys cor-

rectly predicted. As stated previously, the highest number reached using MFCCs was

65.56%.

9
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6 Structure Imposed by MFCCs

Humans aren’t very good at distinguishing keyboard strokes. The whole point

of MFCCs is to emulate the human auditory filtration process to extract the key fea-

tures of the data. This only truly makes sense if humans have been shown to be able

to do discrimination well for the data set in question. i.e. if the features extracted

by humans have been shown to work well for discrimination. MFCCs may be very

appropriate for problems involving speech recognition, but it’s not immediately clear

that they are the best choice for the keyboard classification problem.

On a more fundamental level, the steepness of the intensity function of the Mel

scale determines the shape of the bands of frequencies whose energies are summed to-

gether. It can thus be seen that this intensity function is actually imposing a structure

on the characteristic features you can observe. The intensity function rises sharply

over low frequencies and then slowly flattens out. This results in fine critical bands

at low frequencies and large bands at high frequencies.

Figure 6: Mel Scale and Incompatible True Characteristics

Suppose that the true characteristic features of your data which allow discrimi-

nation are not concentrated at low frequencies, such an algorithm might group them

together. See Figure 6 for an illustration. The characteristic features that are useful

for discrimination are labeled by x’s. Only the joint effects of characteristic frequen-

10



cies belonging to the same band are maintained. An intensity function which is steep

for high frequencies and relatively flat for low frequencies, would yield critical bands

which are more compatible with the data in Figure 6. Using the same number of

critical bands, it would be possible for such a function to maintain the individual

effects of more of these features.

This is just one example of a possible distribution of features. The idea behind

NMFCCs is that it is better to allow the data to tell you where its characteristic

features are, rather than presuming their density over the frequency domain a priori.
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7 Construction of the NMFCCs

NMFCCs are for the most part identical to MFCCs. The key difference is that

their intensity function is modeled to fit the types of sounds which are being ana-

lyzed, as opposed to being based on the principles of human physiology. As with

the traditional MFCCs, the derivation of the NMFCCs begins with the Short-time

Fourier Transform of the data. This maps the data from the time-amplitude domain

into the time-frequency domain. The goal is to obtain a new intensity function that

will represent the structure of the characteristic features better. To do this, the fre-

quencies that were obtained from the FT were sorted from least to greatest. This

removes time ordering sensitive data from the intensity function. Recall:

−log ([STFTs]x[Scaling]) x[IDCT ]

The STFT’s are composed with the ordered scale thus summing along respective crit-

ical bands and recovering at least some of the time ordering.

Since there is variability inherent in the properties of key strokes, the frequency

decompositions for many keys were combined to get a better model for an average key

hit. As a result, the size of the representation obtained for the new intensity function

is large. For the problem of key discrimination, it was characterized by approximately

90,000 entries. In order to construct the new [Scaling] matrix, new frequencies, not

necessarily in the original 90,000 characteristics need to be mapped by the new in-

tensity function. To achieve this, a parametric model for the intensity function was

created.

First the frequency decomposition for a collection of keys is stored in F. The

data is sorted from least to greatest among each STFT window, and then from least

12
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to greatest for each position over all windows. The result is that the columns contain

the nth smallest entry for each window sorted from least to greatest.

Figure 7: 1st smallest Figure 8: 25th smallest

Figure 9: 50th smallest

These are initially compared with exponentials centered about the mean of domain.

The residuals from this regression are used to help define the next set of parameters

which will be introduced. In greater detail:

1. Define T to be a sequence starting from 1.

2. Find the optimal β0 for frequency = β0·e0.01(T−µ) subject to standard regression

assumptions.
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Figure 10: Residuals for 1st Figure 11: Residuals for 25th

Figure 12: Residuals for 50th

The data points after the minimum residual occurs are not considered. It is possible

that there could be important information in these few final points, but they do not

follow the same form as the rest of the data. Instead of adding more parameters into

the model to explain them sufficiently, they were thrown out. Exploring the amount

of information which is contained in these points is an area which further research

could investigate.

The locations of the maximum and minimum residuals from the above regressions

are used to define the cutoffs for a spline model which is exponential over the first
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region and the sum of an exponential and a line over the second region. Some examples

of the residuals after the separation of the exponential and introduction of the linear

component are given below:

Figure 13: Residuals for 1st Figure 14: Residuals for 25th

Figure 15: Residuals for 50th

15



The fully sorted data is shown in the following graph. The information gained over

the aforementioned regressions will be used to help create a parametric model.

Figure 16: Combined Sorted Frequencies

These regressions are applied on a larger scale to the combined data set. The in-

formation gained about the residuals is used to search more efficiently for the optimal

cutoff points for the spline. The functions defined on this region are also dependent

on the indices at which the maximum and minimum residuals were found in the

preliminary steps.

Summary of the Regression applied to the Combined Sorted Data

Call:

lm(formula = AllscfL[1:K2] ~ y2f + ys2f + linf)

Residuals:

Min 1Q Median 3Q Max

-87988.3 -531.9 107.1 792.7 44758.7
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.488e+02 1.267e+01 59.11 <2e-16 ***

y2f 7.152e+02 7.101e-01 1007.16 <2e-16 ***

ys2f 1.586e-183 0.000e+00 Inf <2e-16 ***

linf -7.222e+02 2.454e+00 -294.26 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 3267 on 86773 degrees of freedom

Multiple R-squared: 0.9473, Adjusted R-squared: 0.9473

F-statistic: 5.199e+05 on 3 and 86773 DF, p-value: < 2.2e-16

This will serve as the NMFCC intensity function for the four key classification prob-

lem.
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8 Performance & Conclusion

The NMFCCs were used in [3]’s algorithm in lieu of the MFCCs. Without

increasing the number of coefficients, the accuracy was improved by approximately

30.51% from 65.56% to 85.56%. There are many aspects of NMFCCs which remain to

be investigated. The approximation for the intensity function which was used still had

very large errors in some spots. NMFCCs are constructed by the prevalence of certain

frequencies in a signal, but this may not be truly representative of the characteris-

tic frequencies which allow for discrimination. Intensity functions which are defined

on the variability in the prevalence of frequencies in certain areas may perform better.

In this case, it is clear that objective intensity functions yield better features

for discrimination. For speech recognition problems, MFCCs are logically very good

features to use; however, to make these results more general, future research could

look into the classes of problems for which NMFCCs and objective frequency functions

provide significant improvement of extracted features.
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