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Abstract

Until recently few research has been performed in the
area of animal sound retrieval. The authors identify state-
of-the-art techniques in general purpose sound recognition
by a broad survey of literature. Based on the findings, this
paper gives a thorough investigation of audio features and
classifiers and their applicability in the domain of animal
sounds. We introduce a set of novel audio descriptors and
compare their quality to other popular features. The results
are encouraging and motivate further research in this do-
main.

1. Introduction

Recently, audio data gained importance in the field of
content-based retrieval. The rising number of audio and
video databases states the need for efficient retrieval. The
Quality of retrieval depends on the features that represent
the signal, and on the classifiers that discriminate between
classes of signals. Animal sounds are a domain of envi-
ronmental sounds that has not been investigated yet in de-
tail. Some investigations consider animal sounds among
other classes of sound [14], [12]. To the authors’ knowl-
edge there is no prior work analyzing the discrimination of
animal sounds from each other. Our contribution to this re-
search field is represented by a thorough investigation of the
applicability of state-of-the-art audio features in the domain
of animal sound recognition. Additionally we introduce a
set of novel features and compare their performance with
popular audio features. Besides, we present an extensive
survey of state-of-the-art features and classifiers.
In this paper the authors try to identify an efficient method
for automatically distinguishing between sounds of differ-
ent animals. Such a technique could be part of a supporting
system for the deaf, providing information about the sur-
rounding environment. Automatic surveillance and anno-
tation of time-dependent media may employ animal sound

recognition as well. Additionally, life logging applications
could take advantage of such a technique, imagine a visit to
the zoo.
Audio data may be coarsely divided into three classes:
speech, music, and environmental sounds. Speech recog-
nition has a long tradition and is extensively surveyed by
Rabiner and Juang in [23]. Music analysis deals with the
identification of music genre, artist, instruments and struc-
ture [9].
The remainder of this paper is organized as follows: In Sec-
tion 2 the principles of Support Vector Machines (SVM)
are given. Section 3 addresses the methodology considered.
Results are discussed in Section 4. A survey of related work
is performed in Section 5. Finally in Section 6 conclusions
and future work are presented.

2. Background

Classification is an important step in content-based re-
trieval. The process of classification tries to correctly pre-
dict the class of a sample. A recent classifier is the Sup-
port Vector Machine (SVM) [3][30]. SVMs are supervised,
statistical learning methods applicable for classification and
regression. They are also known as maximum-margin clas-
sifiers.
Given two separable clouds of points(x1, y1), · · · , (xk, yk)
wherexi ∈ Rn andyi ∈ {−1, +1}, an SVM constructs an
optimal separating hyperplanewx + b = 0, that max-
imizes the distance between the hyperplane and the near-
est data point of each cloud (these points are the support
vectors). The distance between the support vectors and the
hyperplane is called margin. Figure 1 depicts the differ-
ence between a suboptimal and an optimal separating hy-
perplane.
The hyperplane is not constructed in feature space, instead
the saddle point of the following Lagrange functional is cal-
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Figure 1. Optimal Separating Hyperplanes
(OSH): (a) g, h, i are valid but not optimal sep-
arating hyperplanes. (b) k is the OSH, the
distance between k and m1 respectively m2
is equal and maximal.

culated:

L(w, b, α) =
1
2
‖w‖2 −

l∑

i=1

αi {yi [(w · x) + b]− 1} ,

(1)
whereαi are the Lagrange multipliers. Equation (1) may be
transformed into problem (2) which is easier to solve.

w̄ =
l∑

i=1

ᾱiyixi, b̄ = −1
2
w̄ · [xr + xs] (2)

wherexr and xs are two arbitrary support vectors with
ᾱr, ᾱs > 0, yr = 1, ys = −1. Slack variablesζi and a
penalty functionF (ζ) =

∑l
i=1 ζi are the means by which

SVMs become applicable for the non-separable case [6].
The separating hyperplane is constructed in such a manner,
that the number of falsely classifiedxi is minimal. This
consequently minimizesF (ζ). The slack variables only in-
fluence the Lagrange multipliersαi, hence the solution for
the optimization problem stays the same as for the separa-
ble case.
In practice most problems are not linearly separable. In-
stead of identifying a non linear separating function, the
data points are transformed into a higher order space in
which they become linearly separable. This is achieved by
the use of kernels. Figure 2 illustrates the effect of a poly-
nomial kernel that maps the input space into a feature space
of higher order. Equation (3) describes the SVM classifier,
whereK (xi,xj) is the kernel used.

f (x) = sign

( ∑
support vectors

ᾱiyiK (xi,xj) + b̄

)
(3)

There are three typical kernel functions:

(a) not linearly separable (b) linearly separable

Figure 2. The Kernel maps the one dimen-
sional input space (a) into a feature space of
higher dimensionality, where the inputs be-
come linearly separable (b).

1. polynomial:K (xi,xj) = [(xi · xj) + 1]d,

2. Radial Basis Function (RBF):

K (xi,xj) = exp
(
− (xi − xj)

2
/2γ2

)
, and

3. sigmoid:K (xi,xj) = tanh (scl · (xi · xj)− off),

wherescl (scale) andoff (offset) are parameters that have to
be chosen with care. The kernel becomes invalid for certain
parameter values. Kernel functions are not limited to the
ones mentioned above. Any symmetric function that sat-
isfies the conditions in Mercer’s Theorem is a valid kernel
function [2].

3. Experiments

Distinction of animal sounds has not been investigated
yet. In this paper we examine ways to distinguish between
animal sounds. We choose four animals, namely birds, cats,
cows, and dogs. Sounds by birds and cats respectively by
cows and dogs show significant similarity on a perceptual
level. That qualifies them to measure the quality of features
and classifiers.
There is no publicly available reference database of animal
sounds. The authors built a custom database of sound sam-
ples from an internet search. The database contains 383
samples (99 birds, 110 cats, 90 cows, 84 dogs). The data
have a sample rate of 11025 Hz, are quantized to 16 bit
and are single channel. A sound sample contains one or
more repeated sounds of an animal (e.g. repeated barks of a
dog). Additionally some samples contain background noise
of other animals. File lengths and loudness levels vary over
the samples.
All experiments are conducted in MATLAB using an ex-
tensible framework. Our framework supports the definition
of experiment setups by configuration files. Configuration



files specify ground-truth, test data, features, classifiers, and
result output options. This enables efficient and consistent
tests of various features and classifiers.

3.1. Feature Extraction

The survey in this paper considers multiple state-of-the-
art features applied in speech recognition, music informa-
tion retrieval and environmental sound recognition. The
goal is to identify suitable features for the domain of an-
imal sounds. The authors examine different types of fea-
tures. Time domain features include Linear Predictive Cod-
ing (LPC) coefficients, Zero Crossing Rate (ZCR), Period-
icity Histogram, Sone and Short Time Energy (STE). The
following spectral features are investigated: Relative Spec-
tral Predictive Linear Coding (RASTA PLP), Pitch, Spectral
Flux (SF) and coefficients from basic time-frequency trans-
forms (FFT, DCT, DWT, CWT and Constant Q-Transform).
Cepstral domain features are Mel Frequency Cepstral Coef-
ficients (MFCC) and Bark Frequency Cepstral Coefficients
(BFCC). Additionally we introduce a set of new time-based
features that describe the shape of the waveform of the sig-
nal. We call them Length of High Amplitude Sequence (Lo-
HAS), Length of Low Amplitude Sequence (LoLAS) and
Area of High Amplitude (AHA).
Some of the above features do not perform sufficiently well
and are not considered in detail. For example, the coeffi-
cients of the basic transforms (FFT, DCT, DWT, CWT and
Constant Q-Transform) poorly discriminate the classes of
animal sounds. The reason for this is that significant infor-
mation in higher frequency bands is not considered in the
first transform coefficients. RASTA PLP [8], ZCR, Pitch
[26], Sone [22] and SF perform slightly better and are can-
didates for combinations with other features.
In the following we describe features that performed best
for our data set. Linear predictive coding (LPC) represents a
signal processing technique applied in signal compression,
speech synthesis and speech recognition [28]. The goal of
LPC is to separate formants from a speech signal. Formants
describe the vocal tract (mouth, throat) of a speaker by its
resonances. The formants are extracted by a linear predic-
tor. The linear predictor tries to express the value of a sam-
ple by a linear combination of values of previous samples.
LPC estimates coefficients using linear prediction, that min-
imizes the mean square error (MSE) between the original
signal and the predicted signal. The coefficients of the lin-
ear predictor represent the formants of a speech signal. LPC
coefficients are employed in speech recognition to distin-
guish between phonemes. It is beyond the authors knowl-
edge that LPC coefficients have been introduced to environ-
mental sound recognition. In this paper LPC features are
successfully applied to animal sounds (see Section 4).
Cepstral Coefficients (CCs) are a popular feature in audio

retrieval [18], [32]. The authors of [29] define the cepstrum
as the Fourier Transform (FT) of the logarithm (log) of the
spectrum of the original signal.

signal → FT → log → FT → cepstrum

In practice, CCs are derived from the FFT or DCT coeffi-
cients or linear predictive analysis [4]. CCs offer a compact
and accurate high order representation of signals. Peaks in
the cepstrum correspond to harmonics in the power spec-
trum.
Computation of MFCCs includes a conversion of the loga-
rithmized Fourier coefficients to Mel scale. After conver-
sion, the obtained vectors have to be decorrelated to re-
move redundant information. A DCT is applied to receive a
decorrelated, more compact representation. MFCCs are an
instance of CCs. In the following sequence the computation
of MFCCs is illustrated.

signal → FT → log → Mel → DCT → MFCCs

A closely related group of features is BFCCs. BFCCs are
similarly computed as MFCCs. They differ in the applied
scale (Bark scale).

signal → FT → log → Bark → DCT → BFCCs

Bark scale and Mel scale are perceptually motivated
acoustical scales that nonlinearly map the signal frequency.
Both nonlinear scales offer higher resolution for low fre-
quencies than for high frequencies. MFCCs and BFCCs are
expected to perform similarly.
Additionally to the features above we introduce a set of
time-based low-level features. The features describe char-
acteristics of the waveform such as peaks and silence. The
features are computed based on an adaptive threshold. The
threshold for a particular sound sample is the sum of mean
and standard deviation of the absolute sample values. This
threshold separates peaks from silence in the waveform.
Based on this threshold we compute the length of high am-
plitude sequences (LoHAS). The length of a high amplitude
sequence represents the number of consecutive samples that
have a value greater or equal to the threshold. LoHAS rep-
resents the distribution of the length of peaks in the sig-
nal. Figure 3(a) illustrates this feature. Analogously we de-
fine the length of a low amplitude sequence (LoLAS) as the
number of consecutive samples that have a lower value than
the threshold. LoLAS describes the distribution of length
of the silent portions in the signal. Details are depicted in
Figure 3(b). Sequences with high amplitude can be further
characterized by the corresponding area below the wave-
form. We compute the area of high amplitudes (AHA) as
area between the threshold and the signal in a LoHAS. In
other words the AHA feature represents the extent of peaks
in the signal. Figure 3(c) illustrates this concept.
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Figure 3. LoHAS, LoLAS and AHA for signal
s(x) with threshold t(s(x)): (a) Length of High
Amplitude Sequence (LoHAS). (b) Length of
Low Amplitude Sequence (LoLAS). (c) Area
of High Amplitude (AHA).

The authors consider statistical properties of LoHAS, Lo-
LAS, and AHA to build features that describe entire sample
files. The final features comprise mean, standard deviation
and median of LoHAS and LoLAS over the entire signal.
Additionally we extract the mean of AHA. This results in
a 7 dimensional feature vector which is used for classifica-
tion.

3.2. Classification

This section offers a brief discussion of the classification
methods and the parameters used. Three supervised classi-
fiers are employed: SVM, described in Section 2, Nearest
Neighbor (NN) with an Euclidean distance measure, and
the MATLAB implementation of Linear Vector Quantiza-
tion (LVQ). The SVM is applied with a linear kernel and
an RBF kernel. NN is considered to test the quality of the
features. Features that discriminate classes well, provide

disjoint partitions of the feature space. Satisfactory results
with the NN algorithm indicate such a partitioning in the
feature space.
LVQ by Kohonen [16] is a classification method closely re-
lated to Self Organizing Maps (SOMs) [15]. LVQ tries to
approximate the distribution of classes. The LVQ algorithm
iteratively computes codebook vectors in a manner that the
error rate is minimized. Each codebook vector represents a
particular class. Results heavily depend on the class distri-
bution in the training set and the initially chosen codebook
vectors; i.e. two consecutive runs of the training algorithm
do not necessarily yield the same results. We utilize a train-
ing set with evenly distributed classes and 200 epochs for
training.

4. Results

In this section we present the results of our experiments.
The sample database is split into a test set and a training
set. The training set comprises 12 samples per class. The
remaining samples form the test set: 87 bird samples, 98 cat
samples, 78 cow samples, and 72 dog samples.
Multiple features performed poorly for our test data. The
first few transform coefficients of FFT, DCT, DWT, CWT
and Q-Transform insufficiently discriminate the animal
sounds. The selected coefficients do not express the high
frequencies well. In the case of animal sounds, high fre-
quencies contain significant information (e.g. for cats and
birds). Performance of one-dimensional features such as
ZCR, SF, and Pitch is below that of multi-dimensional fea-
tures, but low-dimensional features are not able to suffi-
ciently represent the samples. In combination with other
features ZCR, SF, and Pitch may improve results. STE is
only useful in classification based on frames. When STE
is computed for entire files, it represents the average energy
of the sound sample, which does not provide meaningful in-
formation in our case.
In the following we consider the best performing features

in detail, which are LPC, MFCC, BFCC, and an amplitude
descriptor (AD). They are described in the rest of this sec-
tion. The AD consists of LoHAS (mean, standard devia-
tion, median), LoLAS (mean, standard deviation, median),
and AHA (mean). LPC coefficients may be represented in
many different ways [4]. For the data set used, the repre-
sentation as impulse response is the best choice. 20 LPC
coefficients are extracted from each sound sample. We con-
sider the first 20 MFCCs and BFCCs [4], [8]. Delta and
Double Delta Cepstrum features perform poorly and are not
considered. At first the selected features are tested in iso-
lation. Afterwards we try to identify an optimal solution to
the recognition problem by combining features.
Each selected feature is tested with three classifiers: SVM,
NN, and LVQ. The classifiers are trained by the training set
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Figure 4. Recall (green) and precision (yel-
low) of the single features classified by: (a)
SVM, (b) LVQ, (c) NN. AD can compete with
the higher dimensional features.

Figure 5. Recall (green) and precision (yellow)
of the combined feature vector with different
classifiers. The feature in combination with
SVM performs best.

to construct a model that describes the data. The test data
serve to validate the model. For each feature we compute
recall and precision per class. Figure 4 shows mean recall
and mean precision over all classes for the selected features.
MFCCs and BFCCs perform nearly identically. This results
from the fact that both are cepstral domain features that only
differ in the psycho-acoustical scaling. MFCCs deliver the
best results using the NN classifier (recall=0.81). That indi-
cates that MFCCs cluster the feature space according to the
classes. The SVM with a linear kernel yields similar results
for MFCCs and BFCCs. LVQ provides slightly less perfor-
mance for these features.
LPC coefficients discriminate the classes well. Best results
are gained by the SVM with an RBF kernel illustrated in
Figure 4(a). The NN classifier suboptimally explains the
data. The distribution of the LPC coefficients appears to be
too complex for the simple NN decision rule. LVQ demon-
strates similar performance as NN for LPC. Figure 4(b) de-
picts the results obtained by LVQ.
In contrast to MFCC, BFCC, and LPC, each with 20 com-
ponents, AD only consists of 7 components. Classification
with the SVM and a linear kernel provides a recall and a
precision of 0.78. This is comparable to the other features,
illustrated in Figure 4(a). For the NN classifier recall and
precision of AD lie between those of LPC and MFCC. The
results of AD and LPC are similar using the LVQ classifier.
In many cases AD performs equally or better than the other
features, although it is of much lower dimension.
The features in our tests achieve satisfactory recall and pre-
cision with all classifiers (between 0.7 and 0.8). The clas-
sifiers do not perform equally well. While the SVM is able
to maintain high precision and recall for all four features,
LVQ and NN are not. The reason for this is, that NN and
LVQ depend on the clustering of samples in feature space.



They deliver satisfactory results when the classes form dis-
joint clusters. In contrast, SVM constructs a more abstract
model. As a consequence it depends less on the distribution
of samples in feature space.
Up to now we concentrated on individual features. In order
to improve retrieval quality, we combine several features
to a feature vector. This makes sense because the combi-
nation aggregates information present in separate features.
The feature vector comprises 26 components: 3 compo-
nents (mean, standard deviation, median) of LoHAS respec-
tively LoLAS, 4 LPC coefficients, 13 MFCCs, the mean SF,
the mean Pitch, the first RASTA PLP coefficient and the
mean of Sone. Classification based on this feature vector
yields an average precision and recall above 0.9 using the
SVM with a linear kernel. This is a significant improve-
ment over results with the individual features. LVQ and NN
profit from the combined feature vector as well. Figure 5
depicts recall and precision of the combined feature vector
for different classifiers.

5. Related Work

There are different groups of audio retrieval techniques.
Numerical representation of signals by features, is common
to all methods. Approaches can be grouped by the way sim-
ilarity among different signals is detected. A straight for-
ward technique is to apply a distance measure directly to
the features. Pioneering work in this area concerning au-
dio is performed in [31]. The authors develop a content-
based audio retrieval system (Muscle Fish) that distin-
guishes classes such as animals, machines, musical instru-
ments, telephone, etc. They extract features such as loud-
ness, pitch, brightness and bandwidth. Similarity is mea-
sured using a weighted Euclidean distance (Mahalanobis).
Classification is accomplished by the nearest neighbor rule.
An alternative to directly measuring similarity is the use
of artificial intelligence techniques such as Support Vector
Machines (SVM) [6], Hidden Markov Models (HMM) or
Artificial Neural Networks (ANN). An early example in the
domain of audio processing is represented by [10]. The au-
thors apply a self-organizing neural network to cluster sim-
ilar sounds. Another way of classification is based on tem-
plate matching [11]. The author extracts MFCC features
from the audio signal and clusters the feature space into dis-
tinct cells with a quantization tree (Q tree). Histograms are
considered as templates. They represent the distribution of
feature vectors over the partitions of the tree. Templates are
compared by distance measures (e.g. Euclidean distance or
cosine distance).
Segmentation is an important preprocessing step of audio
analysis. It is employed to discriminate different types of
sound such as speech, music, environmental sounds and
combinations of these. The authors of [25] separate mu-

sic and speech with low level features. They apply Spectral
Centroid, Spectral Flux (SF), Zero Crossing Rate (ZCR),
Spectral Roll-off, and Percentage of Low Energy Frames
to represent the audio signal. Different classification tech-
niques such as Gaussian Mixture Model (GMM) and Near-
est Neighbor (NN) are used to separate speech from music
based on these features.
Based on successful segmentation of an audio stream, dif-
ferent audio types can be further analyzed. The most inten-
sive research took place in the area of speech recognition.
Beside classical recognition of speech [23] researchers fo-
cus on recognition of the spoken language [21]. Another
field of research is classification of the speaker (e.g. for
customization issues or authentication) [24]. In the area of
multimodal dialog systems recognition of human emotions
from audio gains focus [5]. The different areas of speech
processing are a source to survey state-of-the-art audio fea-
tures.
Beside speech recognition music information retrieval
(MIR) gained importance through the availability of huge
amounts of digital music. MIR consists of classification
and structural analysis. Classification concerns recognition
of instruments, artists and genres. Multiple speech recogni-
tion features are applicable to the classification of music.
In [18] the authors distinguish between instruments (e.g.
Brass, Keyboard, and String) by extracting features such
as ZCR, Short Time Energy (STE), Bandwidth, Pitch, For-
mant Frequencies and Mel-Frequency Cepstral Coefficients
(MFCC). These features are computed from short frames of
the audio signal. The mean and standard deviations of the
features over all frames add up to the final feature vector that
represents the signal. Classification is performed by GMM
and NN. Music genre classification is addressed in [13]. In
this paper the authors propose the discrete wavelet packet
decomposition transform to distinguish music genres.
Structural music analysis tries to extract similarities and
recurrences in a piece of music. A comprehensive struc-
tural analysis is performed in [20]. Autocorrelation is com-
puted to extract Rhythm from the wavelet-decomposed sig-
nal. Pitch Class Profiles in combination with HMM separate
chords. Vocal and instrumental sections are characterized in
terms of Octave Scaled Cepstral Coefficients (OSCC). An
SVM trained with OSCC features separates vocal from in-
strumental sections.
Environmental sound recognition concerns the identifica-
tion of sounds that do not originate from speech or mu-
sic. The range of environmental sounds is extremely wide.
Hence, most investigations concentrate on a restricted do-
main. A popular research field is audio recognition in
broadcasted video. In [19] the authors recognize the scene
content of TV programs (e.g. weather reports, advertise-
ment, basketball and football games) by analyzing the au-
dio track of the video. They extract Pitch, Volume Distrib-



ution, Frequency Centroid and Bandwidth to characterize
TV programs. Classification is performed by a separate
neural network for each class. A well investigated problem
is highlight detection in sport videos. The authors of [27]
retrieve crucial scenes in soccer games by analyzing play-
breaks. Whistles, that often refer to play-breaks in sports,
are detected using Spectral Energy within an appropriate
frequency band. Another indicator for highlights is the au-
dience. Excitement is quantified by Loudness, Silence and
Pitch. A similar approach is followed by [32]. The au-
thors analyze keywords in commentator speech and audi-
ence which are relevant to important actions of the game.
They apply an HMM trained with low level features (En-
ergy and MFCCs including delta and double delta features)
to recognize the keywords. Investigations presented in pa-
per [33] address extraction of highlights in baseball games.
Beside visual features the authors extract audio features
(e.g. MFCC, Pitch, Entropy). An SVM detects excitement
of the audience. Template matching is applied for base-
ball hit detection. These two audio cues are combined to
improve quality of highlight detection. Another area of in-
terest is surveillance and intruder detection. A broad survey
of audio features and classification techniques, in context of
automatic surveillance is given in [7].
In [34] multilevel classification is proposed. First the au-
thors apply a coarse level segmentation to separate speech,
music and environmental sound. In a second step an HMM
is considered to analyze environmental sounds (e.g. foot-
step, laughter, rain, windstorm). The authors of [14] present
an audio indexing system using MPEG-7 features. They
apply Audio Spectrum Basis (ASB) and Audio Spectrum
Projection (ASP) descriptors to distinguish classes such as
”Dog”, ”Bell”, ”Water”, and ”Baby” with HMMs. They
show that MPEG-7 descriptors perform similar to MFCC.
SVMs are successfully applied to environmental sound
recognition in [12]. The authors compare and combine
cepstral features (MFCCs) with perceptual features (Total
Spectrum Power, Subband Powers, Brightness, Bandwidth,
and Pitch). In [12] perceptual features outperform cepstral
features. Best results are reached by a combination of both.
In [12] SVM performs better than NN and k-NN.
A challenging area of environmental sound recognition is
life logging. This research field is concerned with continu-
ously analyzing the environmental sounds of a human user.
From this information a diary is built where major events
and the user’s activities are stored. Fundamental research in
the domain of life logging is performed in the ”Forget-me-
not” system [17]. ”Forget-me-not” is a mobile application
that analyzes the activities of a user in his office. This in-
cludes monitoring the workstation, telephone, printer and
the location of the user. In [1], Aizawa presents a life log-
ging system that captures video and audio. Audio informa-
tion is considered to detect human voice to recognize con-

versation scenes. The system supports GPS and provides
inertial trackers to measure motion. Additionally it has ac-
cess to documents, web pages, and emails. Applications
discussed in this section prove the importance of environ-
mental sound recognition for future information systems.

6. Conclusions & Future Work

Discrimination of animal sounds is a rarely considered
area of environmental sound recognition. In this paper we
presented a survey of widely used audio features and clas-
sifiers. Our research focus was the investigation of their
applicability in the domain of animal sound recognition.
We introduced a set of novel time-based audio features that
are easy to compute. Despite their simplicity, they perform
comparably to much more complex features, such as MFCC
or LPC. We have shown that a combination of state-of-the-
art features with our feature set is able to successfully clas-
sify more than 90% of the animal sounds in our database
(using SVM). Beside SVM, we employed NN and LVQ
classifiers in our experiments. All classifiers yielded sat-
isfactory results. The SVM slightly outperformed NN and
LVQ.
Further work will include comparison of the features dis-
cussed in this paper with MPEG-7 features for environmen-
tal sound recognition. Additionally we will examine context
sensitive classifiers such as Hidden Markov Models and Ar-
tificial Neural Networks. Animal sound recognition will be
incorporated into life logging applications. A future goal
is the distinction of different sounds from the same species
(”understanding animals”).
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