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Abstract—Gaussian process classifiers (GPCs) are Bayesian probabilistic kernel classifiers. In GPCs, the probability of belonging to a

certain class at an input location is monotonically related to the value of some latent function at that location. Starting from a Gaussian

process prior over this latent function, data are used to infer both the posterior over the latent function and the values of

hyperparameters to determine various aspects of the function. Recently, the expectation propagation (EP) approach has been

proposed to infer the posterior over the latent function. Based on this work, we present an approximate EM algorithm, the EM-EP

algorithm, to learn both the latent function and the hyperparameters. This algorithm is found to converge in practice and provides an

efficient Bayesian framework for learning hyperparameters of the kernel. A multiclass extension of the EM-EP algorithm for GPCs is

also derived. In the experimental results, the EM-EP algorithms are as good or better than other methods for GPCs or Support Vector

Machines (SVMs) with cross-validation.

Index Terms—Gaussian process classification, Bayesian methods, kernel methods, expectation propagation, EM-EP algorithm.
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1 INTRODUCTION

KERNEL classifiers have recently received much attention
from the machine learning community. Some popular

kernel classifiers are the support vector machine (SVM),
Bayes point machine (BPM), and Gaussian process classifier
(GPC). The SVM was proposed as a classifier maximizing
the margin, which is the smallest distance between data
points and the class boundary [1]. SVMs have been a
popular tool and have resulted in many successful applica-
tions. The BPM is a kernel classifier whose goal is to
approximate Bayes-optimal classification by finding the
center of the mass of version space, which is the set of
hyperplanes in feature space that separate the data [2]. It
was also shown that SVMs can be viewed as a form of Bayes
point machine which tries to find the center of the largest
ball to fit in version space. In contrast with the above two
classifiers, GPCs are Bayesian kernel classifiers derived
from Gaussian process priors over functions which were
developed originally for regression [3], [4], [5].

Gaussian processes for regression [5], [6], [7], [8] assume
that the target function has a Gaussian process prior. This
means that the density of any collection of target function
values is modeled as a multivariate Gaussian density.
Usually, the mean of this Gaussian is assumed to be zero
and the covariance between the targets at two different
points is a decreasing function of their distance in input
space. This decreasing function is controlled by a small set

of hyperparameters that capture interpretable properties of
the function, such as the length scale of autocorrelation, the
overall scale of the function, and the amount of noise. The
posterior distributions of these hyperparameters given the
data can be inferred in a Bayesian way via Markov Chain
Monte Carlo (MCMC) methods [5], [7] or they can be
selected by maximizing the marginal likelihood (also
known as the evidence) [8]. A Bayesian treatment of
multilayer perceptrons for regression has been shown to
converge to a Gaussian process as the number of hidden
nodes approaches to infinity, if the prior on input-to-hidden
weights and hidden unit biases are independent and
identically distributed [9]. Empirically, Gaussian processes
have been shown to be an excellent method for nonlinear
regression [10].

In GPCs, the target values are discrete class labels while
the target values in GP regression are continuous real
values. It is not appropriate to assume that the target
function with discrete outputs has a Gaussian process prior.
We assume that there is some latent function whose value at
a certain input location is monotonically related to the
probability of belonging to a certain class at that location
and that the latent function rather than the target function
has a Gaussian process prior. We can use a Gaussian
process as a prior of the latent function, and for multiclass
classification, one can use multiple GPs or a multivariate
GP. Since only the class labels are observed in GPCs, we
need to integrate not only over hyperparameters but also
over latent values of these functions at the data points.
Williams and Barber [3] used a Laplace approximation to
integrate over the latent values and Hybrid Monte Carlo
(HMC) to integrate over the hyperparameters. Neal [5] used
Gibbs sampling to integrate over latent values and used
HMC to integrate over hyperparameters. Gibbs and Mackay
[4] used a variational approximation method to integrate
over latent values and determined hyperparameters by
maximizing the marginal likelihood. Opper and Winther
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[11] used the TAP approach originally proposed in

statistical physics of disordered systems to integrate over

latent values.
It turns out that the TAP approach for GPCs is equivalent

to the Expectation Propagation (EP) algorithm for approx-

imate inference in Bayes point kernel machines [12]. EP has

been shown to give results which are superior to Laplace’s

method and are very similar to MCMC methods both in

terms of predictive distributions and marginal likelihood

estimates [13]. In these previous papers, the focus has been

on approximate inference rather than determining hyper-

parameters. Two potential methods for determining the

hyperparameters have been proposed in [14]. The first

method, which they called mean field method I, is to

maximize the variational lower bound of the evidence

under the assumption that the densities of latent values are

independent and Gaussian. The second method, which they

called mean field method II, is to maximize the evidence

approximated by Fourier transformation of the likelihood

and a saddle point approximation. An EM algorithm for

learning the kernel length scales using an L1 prior has also

been proposed [15].

In this paper, we propose and investigate a conceptually

simple EM-like algorithm to learn the hyperparameters

which we call EM-EP.1 In the E-step, we use EP to estimate

the joint density of latent values under the assumption that

the joint density is multivariate Gaussian. This multivariate

approximation is better than factorized approximations

such as the mean field method I. In the M-step, we

maximize with respect to the hyperparameters the varia-

tional lower bound on the marginal likelihood given by

using the density of latent values obtained from the E-step.

These two steps are repeated until convergence. The idea of

using the variational lower bound for model selection in

GPC was suggested in [17]. Here, we use a slightly different

formulation for GPC and provide experimental results.

Another emphasis of this paper is examining the role of the

different hyperparameters and comparing these algorithms

with several variants of SVMs. We also propose an

extension of the EM-EP algorithm for multiclass classifica-

tion. Finally, although improving computational complexity

of GPC learning through sparsification methods is an

important research topic ([18], [19], [20]), we will not

address this problem in this paper.
The paper is organized as follows: Section 2 introduces

Gaussian process classification. In Section 3, we introduce

the EP method for GPCs, derive the EM-EP algorithm,

and show the experimental results. In Section 4, we

derive the EP method and the EM-EP algorithm for

multiclass GPCs and show experimental results. In

Section 5, we discuss our approach and related work.

Software implementing the EM-EP algorithm is available

at http://home.postech.ac.kr/~grass/software/.

2 GAUSSIAN PROCESS CLASSIFICATION

Let us assume that we have a data set D of data points xi

with binary class labels yi 2 f�1;þ1g:

D ¼ fðxi; yiÞji ¼ 1; 2; . . . ; ng;
X ¼ fxiji ¼ 1; 2; . . . ; ng;
y ¼ fyiji ¼ 1; 2; . . . ; ng:

Given this data set, the classification problem is to output

the correct class label for a new data point. To represent our

uncertainty over class labels, one may want a method that

outputs probabilities over the different labels for each new

data point.
We assume that the probability over class labels as a

function of x depends on the value of some latent real-valued

function fðxÞ. That is, for binary classification, given the

value of fðxÞ the probability of class label is independent of

all other quantities: pðy ¼ þ1jx; fðxÞ;DÞ ¼ pðy ¼ þ1jfðxÞÞ.
The probability of observing y ¼ þ1 is assumed to be a

monotonically increasing function of fðxÞ. This can take

several forms, for example for fi ¼ fðxiÞ:

pðyijfiÞ ¼

1
1þexpð�yifiÞ sigmoid

�ðyifiÞ cumulative normal
HðyifiÞ threshold

�þ ð1� 2�ÞHðyifiÞ noisy threshold;

8>><
>>: ð1Þ

where HðzÞ ¼ 1 iff z > 0, �ðzÞ is the cumulative normal

function �ðzÞ ¼
R z
�1

1ffiffiffiffi
2�
p expð� x2

2 Þdx, and 0 � � < 0:5.

We put a Gaussian process (see Fig. 1) prior on this

function, meaning that any number of points evaluated

from the function have a multivariate Gaussian density (see

[7] for a review of GPs). Assume that this GP prior is

parameterized by � which we will call the hyperpara-

meters. We can write the probability of interest given � as:

pð~yj~x;D;�Þ ¼
Z
pð~yj~f;�Þpð~f jD; ~x;�Þ d~f: ð2Þ

The second part of (2) is obtained by further integration

over f ¼ ½f1; f2 � � � fn�, the values of the latent function at the

data points.

KIM AND GHAHRAMANI: BAYESIAN GAUSSIAN PROCESS CLASSIFICATION WITH THE EM-EP ALGORITHM 1949

1. An earlier version of this paper focusing on the EM-EP algorithm for
binary classification was presented at a workshop [16].

Fig. 1. In Gaussian processes for classification the class label is related
to a latent function. (a) Examples of one-dimensional and (b) two-
dimensional data showing a latent function sampled from a Gaussian
process prior and the corresponding class label under the threshold
model.



pð~fjD; ~x;�Þ ¼
Z
pðf ; ~f jD; ~x;�Þ df

¼
Z
pð~fj~x; f ; X;�Þpðf jD;�Þdf ;

ð3Þ

where

pðf jD;�Þ / pðyjf ; X;�Þpðf jX;�Þ ¼
Yn
i¼1

pðyijfi;�Þ
 !

pðf jX;�Þ:
ð4Þ

The first term is the probability of each observed class label
given the latent function value, which can be of one of the
forms in (1), while the second term is the GP prior over
functions evaluated at the data. Writing the dependence of f

on x implicitly, the GP prior over functions can be written

pðf jX;�Þ ¼ 1

ð2�ÞN=2jC�j1=2
exp � 1

2
ðf � ��Þ>C�1

� ðf � ��Þ
� �

;

ð5Þ

where the mean �� is usually assumed to be zero �� ¼~0 and
each term of a covariance matrix Cij is a function of xi and
xj, i.e., cðxi;xjÞ. This covariance function is the kernel which
defines how data points generalize to nearby data points.
The covariance function is parameterized by the hyper-
parameters �, which we can learn from the data. We will
describe the particular covariance functions used in this
paper later on. The Gaussian process classifier can be
represented using the graphical model shown in Fig. 2.

In general, the class probability at a test point would be
obtained by integrating over the hyperparameters weighted
by their posterior probability

pð~yj~x;DÞ ¼
Z
pð~yj~x;D;�Þpð�jDÞ d�: ð6Þ

This integral is costly and there are usually many fewer
hyperparameters than data points. Therefore, in this paper,
rather than integrating over the hyperparameters, we fit
them by maximizing the marginal likelihood as �̂ ¼
arg max� pðDj�Þ and predict using these best fit hyperpara-
meters: pð~yj~x;D; �̂Þ. The marginal likelihood and pðf jD;�Þ
in (4) are both intractable due to the nonlinearities in (1). We
use the Expectation-Propagation (EP) algorithm to approx-
imate both.

3 THE EM-EP ALGORITHM

3.1 Expectation Propagation

The Expectation Propagation (EP) algorithm is an approx-
imate Bayesian inference method [12]. We briefly review EP
in its general form before describing its application to GPCs.

Consider a Bayesian inference problem where the
posterior over some latent value (or parameter) f is
proportional to the prior times likelihood terms for an
i.i.d. data set

pðf jy1; . . . ; ynÞ / pðfÞ
Yn
i¼1

pðyijfÞ ¼
Yn
i¼0

tiðfÞ; ð7Þ

where t0ðfÞ ¼ pðfÞ and tiðfÞ ¼ pðyijfÞ for i ¼ 1; . . . ; n. Notice
that, dropping some variables being conditioned on, (4) is of
this form. We approximate this distribution with a product
of simple terms

qðfÞ / ~t0ðfÞ
Yn
i¼1

~tiðfÞ; ð8Þ

where each term (and therefore q) is assumed to be in the
exponential family. EP iterates the following procedure
over i until convergence:

1. Remove the ith term from qðfÞ: qniðfÞ ¼
Qn

j6¼i ~tjðfÞ.
2. Multiply by the true ith factor: qniðfÞtiðfÞ ¼ qðfÞ tiðfÞ~tiðfÞ

.

3. Find a new ~tiðfÞ ¼ tðfÞ such that it minimizes the
Kullback-Leibler divergence2 from qniðfÞtiðfÞ to
qniðfÞtðfÞ:

~tnew
i ðfÞ ¼ arg min

tðfÞ
KL qniðfÞtiðfÞ

����
����qniðfÞtðfÞ

� �

¼ arg min
tðfÞ

KL
qðfÞ

~told
iðfÞ

pðyijfÞ
����
���� qðfÞ
~told

iðfÞ
tðfÞ

� �
:

ð9Þ

Since q is in the exponential family, this minimiza-
tion is solved by matching moments of the approxi-
mated distribution.

The algorithm is not guaranteed to converge although it
did in practice in all our examples. Assumed Density
Filtering (ADF)3 is a special online form of EP where only
one pass through the data is performed (i ¼ 1; . . .n). EP can
be seen as an extension of ADF to batch situations.

EP has been applied to several Bayesian learning
problems and its excellent performance has been demon-
strated on other problems. Minka showed that EP is better
than Laplace’s method and the variational Bayes method in
terms of accuracy and computational cost for simple
Bayesian learning problems such as the clutter problem
and mixture weights learning problem [12]. It has been
shown that EP provides better accuracy than variational
methods at a comparable cost for the generative aspect
model [21]. EP was also applied to the signal detection
problem in flat-fading channels which can be formulated as
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2. The Kullback-Leibler divergence between two distributions pðfÞ and
qðfÞ is defined as: KLðpðfÞjjqðfÞÞ ¼

R
pðfÞ log pðfÞ

qðfÞ df .
3. ADF appears in several fields such as control, statistics, and artificial

intelligence as different names such as online Bayesian learning, moment
matching, and weak marginalization.

Fig. 2. Graphical model for GPCs with n training data points and one test

data point. xi and yi are observed, ~x is given, ~y is what should be

predicted, fi and ~f are latent and jointly Gaussian, hence have the

undirected edges.



an estimation problem in a hybrid dynamic system with
both continuous and discrete variables [22]. In this problem,
EP provides a much lower computational cost than Monte
Carlo filter and smoothers. Tree-structured EP showed
better accuracy and convergence than normal belief
propagation, and a lower cost than variational trees or
double-loop algorithms [23]. A Bayes point machine with
EP which allows only hard decision boundaries showed
better performance than a hard-margin support vector
machine in most cases [12]. EP is not guaranteed to
converge but in practice it converges in many cases. Its
generalized version which is convergent but slower has
been proposed [24].

3.2 EP for Gaussian Process Classification

We describe EP for GPC referring to [11], [12], [20]. The
form of the likelihood we use in the GPC is

pðyijfiÞ ¼ �þ ð1� 2�ÞHðyifiÞ; ð10Þ

where HðxÞ ¼ 1 if x > 0, and otherwise 0. The hyperpara-
meter, � in (10) models labeling error outliers. The
EP algorithm approximates the posterior

pðf jD;�Þ ¼ pðf jX;�Þpðyjf ;�Þ
pðyjX;�Þ ð11Þ

as a Gaussian having the form

qðfÞ ¼ N ðh;AÞ; ð12Þ

where the GP prior pðf jX;�Þ � N ð0;CÞ has the covariance
matrix C with elements Cij defined by the covariance
function

Cij ¼ cðxi;xjÞ ¼ �0 exp � 1

2

Xd
m¼1

lmdmðxmi ; xmj Þ
( )

þ �1 þ �2�ði; jÞ;
ð13Þ

where xmi is the mth element of xi,

dmðxmi ; xmj Þ ¼
ðxmi � xmj Þ

2 if xm is continous;
1� �ðxmi ; xmj Þ if xm is discrete;

�
ð14Þ

and �ðxmi ; xmj Þ is a Kronecker delta function. 1� �ðxmi ; xmj Þ is a

more reasonable distance measure than ðxmi � xmj Þ
2 for

discrete data.
The hyperparameter �0 specifies the overall vertical scale

of variation of the latent values, �1 the overall bias of the
latent values from zero mean, �2 the latent noise variance,
and lm the (inverse) lengthscale for feature dimension m.
The cumulative normal density likelihood term in (1) is
equivalent to using the threshold function in (10) with � ¼ 0
and nonzero latent noise �2.

EP tries to approximate the posterior (11) which can be
written as:

pðf jD;�Þ ¼ pðf jX;�Þ
Qn

i¼1 pðyijfÞ
pðyjX;�Þ : ð15Þ

pðyijfÞ ¼ tiðfÞ in (10) is approximated by

~tiðfÞ ¼ si exp � 1

2vi
ðfi �miÞ2

� �
: ð16Þ

From this initial setting, we can derive EP for GPC by

applying the general idea described above. The details of

the derivation are in [25]. The resulting EP procedure is

virtually identical to the one derived for BPMs in [12]. We

define the following notation:4

�� ¼ diagðv1; . . . ; vnÞ;hi ¼ E½fi�;hnii ¼ E½f
ni
i �;

�i ¼ V ar½fi�;�nii ¼ V ar½f
ni
i �;

ð17Þ

where h
ni
i and f

ni
i are values obtained from a whole set

except for xi. The EP algorithm is as follows: After the

initialization

vi ¼ 1;mi ¼ 0; si ¼ 1; hi ¼ 0; �
ni
i ¼ Cii; ð18Þ

the following process is performed until all ðmi; vi; siÞ
converge: Loop i ¼ 1; 2; . . . ; n:

1. Remove the approximate density ~ti (for ith data
point) from the posterior qðfÞ to get an “old” posterior
qniðfÞ, and get a marginal qniðfiÞ ¼ N ðhnii ; �

ni
i Þ:

h
ni
i ¼ hi þ �

ni
i v
�1
i ðhi �miÞ;�nii ¼ ð1=Aii � 1=viÞ�1:

ð19Þ

2. Find qnewðfiÞ � N ðhi; �iÞ which minimizes KL diver-
gence from qniðfiÞtiðfiÞ to qnewðfiÞ:

z ¼ yih
ni
iffiffiffiffiffiffi
�
ni
i

q ;Zi ¼ �þ ð1� 2�Þ�ðzÞ;

�i ¼
yiffiffiffiffiffiffi
�
ni
i

q ð1� 2�ÞN ðz; 0; 1Þ
Zi

;hi ¼ hnii þ �
ni
i �i;

ð20Þ

where �ðzÞ is a cumulative normal density function

defined in (1).
3. Get a new ~tiðfiÞ ¼ si expð� 1

2vi
ðfi �miÞ2Þ:

vi ¼ �nii
1

�ihi
� 1

� �
;mi ¼ hi þ vi�i;

si ¼ Zi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v�1

i �
ni
i

q
exp

�
ni
i �i
2hi

 !
:

ð21Þ

4. Obtain a new qðfÞ � N ðh;AÞ using a new ~tiðfiÞ:

A ¼ ðC�1 þ ���1Þ�1; h ¼ A���1m: ð22Þ

The approximate evidence Zð�Þð� pðyjX;�ÞÞ is as

follows:

Zð�Þ ¼ t0ðfÞ
Qn

i¼1
~tiðfiÞ

qðfÞ ¼ j��j1=2

jCþ ��j1=2
expð�r=2Þ

Yn
i¼1

si; ð23Þ

where r ¼
P

i
m2
i

vi
�
P

ij Aij
mimj

vivj
. One iteration of the above

EP algorithm can be executed in Oðn3Þ because (22) can be

done in Oðn2Þ by the Woodbury formula also known as the

matrix inversion lemma [26]. Our approximated posterior
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4. diagðv1; . . . ; vnÞ means a diagonal matrix whose diagonal elements are
v1; . . . ; vn. Similarly for diagðvÞ.



over latent values is qðfÞ ¼ N ðh;AÞ. According to [11], it
can also be written as qðfÞ ¼ N ðC��;AÞ. The approximate
evidence in (23) can be used to measure the quality of fit of
kernels or their hyperparameters to the data for model
selection. However, it is difficult to obtain an updating rule
from (23). In the following section, we derive the algorithm
to find the hyperparameters automatically, based not on
(23) but a variational lower bound of the evidence.

We will demonstrate how to find the hyperparameters
soon, but for the moment, we’d like to concentrate on how
we predict the class probabilities at a new point, ~x. To begin
with, we obtain the density for a latent value ~f correspond-
ing to ~x from (3). We obtain, using the approximation in (12),

pð~f jD; ~x;�Þ ¼
Z
pð~f j~x; f ;�Þpðf jD;�Þ df

� NðkT ðCÞ�1h; 	� kT ð��þCÞ�1kÞ;
ð24Þ

where k ¼ ½cð~x;x1Þ; cð~x;x2Þ; . . . ; cð~x;xnÞ� and 	 ¼ cð~x; ~xÞ.
Probability of ~x being class ~y is obtained from (2) as follows:

pð~yj~x;D;�Þ ¼
Z
pð~yj~f;�Þpð~fjD; ~x;�Þ d~f

¼ �
~ykTC�1hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

	� kT ð��þCÞ�1kÞ
q

0
B@

1
CA; ð25Þ

if we assume the test data point does not have labeling
errors and

pð~yj~x;D;�Þ ¼ �þ ð1� 2�Þ� ~ykTC�1hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	� kT ð��þCÞ�1kÞ

q
0
B@

1
CA; ð26Þ

if we assume the test data point might also have labeling
errors.

Strict classification of a new data point ~x can be done
according to

arg max
~y
pð~yj~x;D;�Þ ¼ sgnðE½~f �Þ ¼ sgnðkTC�1hÞ:

Equivalently, since h ¼ C��, classification can be conducted
according to sgnð

Pn
i¼1 �icðxi; ~xÞÞ which is the expression

found in [11].
More information about EP for GPC can be found on the

Computer Society Digital Library at http://computer.org/
tpami/archives.htm.

3.3 The EM-EP Algorithm

In the last section, we have presented the EP algorithm for
Gaussian process classification. It supplies the posterior
over latent functions, the predictive class probability for
new data points, and the approximate evidence. One
important component missing from the paper so far is an
algorithm to estimate the hyperparameters of the covar-
iance function.

We address the problem of estimating hyperparameters
of the covariance function in the framework of Gaussian
process regression with incomplete target values. This idea
makes it possible to apply an EM-like algorithm. In the
E-step, we infer the approximate (Gaussian) density for
latent function values qðfÞ using EP. In the M-step, using

qðfÞ obtained in the E-step, we maximize a lower bound on
pðyjX;�Þ as a function of �. The E-step and M-step are
alternated until convergence.

. E-step. EP iterations are performed given the
hyperparameters. pðf jDÞ is approximated as a
Gaussian density qðfÞ:

qðfÞ ¼ N ðh;AÞ ¼ N ðC��;AÞ: ð27Þ

. M-step. Given qðfÞ obtained from the E-step, find the

covariance function hyperparameters and the label-

ing error hyperparameter which maximize a lower

bound of the log evidence log pðyjX;�Þ. We define

y ¼ ½y1; y2; . . . ; yn�>, let � represent all of the hyper-

parameters of the model: �; �0; �1; �2; l1; l2; . . . ; lp, and

let �cov represent all those in � except for �. Then, we

obtain the evidence

pðyjX;�Þ ¼
Z
pðyjf ; �Þpðf jX;�covÞ df : ð28Þ

Since the above integral is intractable, we use an
approximation technique. We take a lower bound F
for the log evidence by Jensen’s inequality, as
follows:

log pðyjX;�Þ ¼ log

Z
pðyjf ; �Þpðf jX;�covÞdf ð29Þ

�
Z
qðfÞ log

pðyjf ; �Þpðf jX;�covÞ
qðfÞ df ¼ F:

ð30Þ

Using the E-step result (27) and the fact that
pðf jX;�covÞ ¼ N ð0;C�Þ and ~C ¼ CdiagðyÞ, we ob-
tain the following gradient update rule with respect
to a covariance hyperparameter �ð2 �covÞ:5

@F

@�
¼ 1

2
��>

@C

@�
��� 1

2
tr C�1 @C

@�

� �

þ 1

2
tr C�1 @C

@�
C�1A

� �
:

ð31Þ

The detailed derivation is in Appendix A.

3.4 A Property of the EM-EP Algorithm

It turns out that the gradient of the lower bound of the

evidence pðyjX;�Þ in the M-step of the EM-EP algorithm is

in the same direction as the gradient of the approximate

evidence obtained by EP when we deal with only the

hyperparameters ��cov in the prior density. The proof is as

follows:

Theorem 1. In the M-step of the EM-EP algorithm, the gradient

of the lower bound F of pðyjX;�Þ under qðfÞ with respect to

the hyperparameters ��cov
6 of the covariance function is in the

same direction as the gradient of approximate evidence Zð��covÞ
(� pðyjX; ��covÞ) in (23).
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5. @C
@� is an elementwise differentiation of C.

6. ��cov ¼ ½�0; �1; �2; l1; l2; . . . ; ld�.



Proof. The gradient of F with respect to ��cov is expressed:

r��cov
F ¼ r��cov

Z
qðfÞ log

pðyjf ; �Þpðf jX; ��covÞ
qðfÞ

df ¼ r��cov

Z
qðfÞ log pðf jX; ��covÞ df :

ð32Þ

The gradient of Zð��covÞ with respect to ��cov is expressed

using (23):

r��cov
logZð��covÞ ¼ r��cov

Z
qðfÞ logZð��covÞ

df ¼ r��cov

Z
qðfÞ log

Qn
i¼1

~tiðfÞt0ðf j��covÞ
qðfÞ df

ð33Þ

¼ r��cov

Z
qðfÞ log t0ðf j��covÞ df : ð34Þ

From (32), (34) and the fact that t0ðf j��covÞ ¼ pðf jX; ��covÞ,
we obtain the following equation:

r��cov
F ¼ r��cov

logZð��covÞ ¼
1

Zð��covÞ
r��cov

Zð��covÞ:

ut

According to Theorem 1, when we use the EM-EP

algorithm with only covariance hyperparmeters, the M-step

uses the same direction as the gradient of the approximate

evidence Zð��covÞ. On the other hand, when we use the EM-

EP algorithm with some hyperparameters related to the

likelihood, the M-step does not use the same direction as

the gradient of the approximate evidence Zð��covÞ.
Even though the theoretical justification for the EM-EP

algorithm is harder, in practice generally better inference

(E-step) should lead to better (hyperparameter) learning.

Some examples have shown that the approximate evidence

from EP agrees very well with the one from an MCMC

method [13]. The EM-EP algorithm is more likely to learn

the hyperparameter which is a maximum of the approx-

imate evidence by MCMC method, when its M-step uses

the gradient of the approximate evidence (Theorem 1).

3.5 Experimental Results

To demonstrate the EM-EP procedure, we start with

hyperparameter learning in synthetic data sets. We then

use binary-class real world data sets to compare the

proposed algorithm with SVMs and other classification

methods. In the M-step, we used the conjugate gradient

method with line searches.7 All covariance function

hyperparameters are optimized in log transformed spaces

so as to avoid constrained optimization.

3.5.1 Synthetic Data Sets

First, we show with a simple intuitive example that the EM-
EP algorithm learns the hyperparameters better than
Laplace’s method and the variational method. We have
sampled a latent function in a two-dimensional input space
from a Gaussian process prior with inverse lengthscales 0.5
and 2.0 in the two dimensions. We then sampled 200 data
points randomly from a uniform(-10,10) distribution and
used the sign of the latent function to define the class labels of
the points. Using this data, we learned the hyperparameters
of a GPC with Laplace’s method [3], the variational method
[4], and the EM-EP algorithm. We performed this experiment
10 times for different latent functions. Table 1 shows the
means and standard deviation of the lengthscale hyperpara-
meters learned by the three methods. All methods seem to
underestimate the lengthscale parameters in (13), which
corresponds to assuming functions with longer lengthscales
(i.e., more slowly varying). This may indicate underfitting
due to limited data. The EM-EP algorithm shows the best
results, which are fairly close to the true value.

To show the usefulness of lengthscale hyperparameters,
we generated a simple data set with six features distributed
as follows: x1; x2; x3 � Nðy; 1Þ and x4; x5; x6 � Nð0; 1Þ,
where y 2 f	1g is the class label. That is, x1; x2; x3 are
relevant features while x4; x5; x6 are irrelevant to the
classification problem. We generated 300 data samples for
a training set and 10,000 data samples for a test set. We tried
the EM-EP algorithm with a single lengthscale hyperpara-
meter for all dimensions, or with multiple lengthscale
hyperparameters. As would be hoped, we saw that the
lengthscale hyperparameters for the irrelevant features
(x4; x5; x6) decreased to near zero. The approximate log
evidence and classification error are shown in Table 2. The
result show that GPC with multiple lengthscale hyperpara-
meters was significantly better than one with a single
lengthscale, as measured both by classification error rates as
well as approximate log evidence logZð��covÞ.

3.5.2 Real-World Data Sets

We applied the proposed algorithm to several real-world
data sets. The detailed information for the real-world data
sets we used is in Table 3. Thyroid, Heart disease, and
Ionosphere data sets were obtained from the UCI Machine
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TABLE 1
Comparison of GPCs with Laplace’s Method, the Variational Method, and the EM-EP Algorithm

7. The optimization procedure is described in Appendix B in [10] and the
code is available from http://www.kyb.tuebingen.mpg.de/bs/people/
carl/code/minimize/.



Learning Repository,8 Crabs, and Pima data sets were
obtained from the PRNN site,9 and Boston Housing data set
were obtained from the R software site.10 The Thyroid data
set originally had three classes: “normal,” “hyper,” and
“hypo,” but we created a binary classification problem by
grouping hyper and hypo into “not normal.” The Pima data
set has a training set of 200 and two kinds of test sets, but
we used only the training set as a whole set for experiments.
The Boston Housing data set has 506 data points and
20 variables. It has a pair of duplicated variables, one of
which is wrong and the other is a corrected one for one
attribute, and has another pair of duplicated variables
which are town name and town number. We made a
binary-class data set by assigning a class label according to
whether housing price is greater than USD25000 or not. So,
we actually have 17 variables for our classification problem.

Table 4 and Table 5 show the classification error rates of
various methods. Each data set was divided into 10 folds.
Each fold was subsequently used as a test set, while the
other nine folds were used as a training set. The numbers in
Table 4 and Table 5 are the means of those 10 error rates and
standard errors on the means. We tried three versions of the
EM-EP Gaussian Process Classifier: GPC-EP(s,soft) used a
single lengthscale hyperparameter for all feature dimen-
sions, while GPC-EP(m,soft) used a different lengthscale

hyperparameter for each feature dimension.11 Finally, GPC-

EP(s,hard) was a GPC with a single lengthscale hyperpara-
meter where the decision boundary was “hard” in the sense
that the latent function noise parameter �2 was fixed to
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TABLE 3
Detailed Information on the Real-World Data Sets

(The items “dis.,” “con.,” “classes,” and “data points” mean the number
of discrete variables, continuous variables, classes, and data points in
each data set.)

TABLE 4
Classification Error Rates of Various Methods

for Real-World Data Sets (I)

TABLE 5
Classification Error Rates of Various Methods

for Real-World Data Sets (II)

TABLE 2
Comparison of GPCs with a Single Lengthscale

Hyperparameter and with Multiple Ones

8. Available from http://www.ics.uci.edu/~mlearn/MPRepository.
html.

9. Available from http://www.stats.ox.ac.uk/pub/PRNN.
10. Available from http://www.maths.lth.se/help/R/.R/library/

spdep/html/boston.html.

11. The initial values of hyperparameters for GPC-EP(s,soft) for the
first fold were as follows: �0

0 ¼ 1, �0
1 ¼ 0:0001, �0

2 ¼ 0:001, l0m ¼ 0:05; 8m,
and those for subsequent folds are the results for the former fold. For
GPC-EP(m,soft), the initial values of the hyperparameters for every
fold were the results learned for the same fold in GPC-EP(s,soft).



zero or a very small number. In all GPC models, � (cf (1))
was set to zero.12

We also tried other methods for GPC: GPC-VL(m,soft)
used a variational lower bound, and GPC-VU(m,soft) used
a variational upper bound to infer latent values [4]. GPC-
L(m,soft) used Laplace’s method to infer latent values [3].
All use an optimization scheme for hyperparameters. All
use a multiple lengthscale hyperparameter, but, in the cases
of GPC-VL(m,soft) and GPC-VU(m,soft), they used a
lengthscale hyperparameter of type 1


2
m

instead of type lm.
Even though they do not have latent value noise hyper-
parameter �2, all have a soft decision boundary, because
they use a sigmoid function as a likelihood and they have a
signal variance hyperparameter �0.

We compared our results to several variants of SVMs.13

We wanted to distinguish the effect of the kernel choice
from the effect of the different loss functions and noise
model in SVMs vs GPCs. Thus, in SVM-EP(s,soft), the
kernel, (i.e., covariance function) was set to be the same,
with the same hyperparameters as the corresponding GPC-
EP(s,soft) trained using EM-EP except for the latent noise
variance �2. Instead, the penalty parameter C allowing
training errors (i.e., penalizing the SVM slack variables) was
selected by five-fold cross-validation.14

We also applied both hard and soft-margin SVMs with a
Gaussian kernel with a single lengthscale hyperparameter
(without �0, �1, and �2) selected by 5-fold cross-validation.15

For hard-margin SVM, SVM-CV(hard), we only needed to
perform a two-level grid search for l. For soft-margin SVMs,
SVM-CV(soft), we also had to determine the penalty
parameter C, so we performed a two-level grid search over
a two-dimensional parameter space ðC; lÞ.16 Finally, for
comparison to baseline methods, we also examined the
performance of One Nearest Neighbor (1-NN), k Nearest
Neighbor (k-NN)17 and linear discriminant analysis (LDA).

The experimental results (in Table 4 and Table 5) for the
three versions of EM-EP applied to GPC models provide
interesting insights. GPC with latent function noise (GPC-
EP(s,soft)), i.e., which explicitly allows soft boundaries, is
better than or as good as the harder version (GPC-
EP(s,hard)). This shows that allowing ambiguity at the
boundary is important. For these size data sets, the model
with multiple lengthscale hyperparameters (GPC-EP(m,-
soft)) did not always outperform the single lengthscale
model (GPC-EP(s,soft)). However, multiple lengthscales
did seem to be essential in learning the Crabs data set,
where its error rate was less than half the nearest
competitor, and the multiple lengthscale model usually
performed among the top methods. For higher-dimensional
data sets, fitting too many lengthscale hyperparameters can

clearly lead to the danger of overfitting, and it might be

advisable to do Bayesian averaging over these parameters.
The experimental results for the three variants of SVMs

are also enlightening. The SVM with the same hyperpara-

meters as GPC trained by EM-EP (SVM-EP(s,soft)) is worse

than (Heart disease, Crabs, and Pima) or comparable to or

slightly better than (Thyroid, Ionosphere, and Boston

Housing) the corresponding GPC (GPC-EP(s,soft)). Hard-

margin SVM with cross-validation is worse than GPC with

a hard decision boundary on four out of six data sets and is

slightly better than (or almost as good as) that on the other

data sets. In all data sets, GPC with a soft decision boundary

(GPC-EP(m,soft) or GPC-EP(s,soft)) is better than or as good

as soft-margin SVM (SVM-CV(soft)) with cross-validation.

In all cases, the EM-EP procedure seems to perform better than

cross-validation, even when it comes to fitting the SVM kernel

hyperparameters. Moreover, cross-validation would be com-

putationally prohibitive for models with many hyperpara-

meters, such as the multiple lengthscale models.
The experiment results for GPCs with other approxima-

tion methods than EP are interesting. GPC-EP (m,soft) is

better than GPC-VL(m,soft), GPC-VU(m,soft), and GPC-

L(m,soft) on four out of six data sets and is slightly worse

than (or almost as good as) the best of them on the other

data sets. EP seems to work better than the variational

approximation method and Laplace approximation method

in Gaussian process classification.
GPC and SVM both have a time complexity of Oðn3Þ, but

SVM is usually faster since it uses a sparse scheme.

SVM-CV methods are very slow because of the need to

solve many quadratic programs during cross validation.
More information about the experiment results of the

GPCs can be found on the Computer Society Digital Library

at http://computer.org/tpami/archives.htm.

4 MULTICLASS CLASSIFICATION

In previous sections, we dealt with binary-class Gaussian

process classification. Here, we consider a multiclass

extension of Gaussian process classification.

4.1 The Traditional Multiclass GPC Formulation

If the data has J classes, each data point has latent functions

f1ð�Þ; f2ð�Þ; . . . ; fJð�Þ:

For a data set D ¼ fðxi; yiÞji ¼ 1; 2; . . . ; ng, where

yi 2 f1; . . . ; Jg;

latent function values are represented as

f ¼ ½f1
1 ; f

1
2 ; . . . ; f1

n; f
2
1 ; f

2
2 ; . . . ; f2

n; . . . ; fJ1 ; f
J
2 ; . . . ; fJn �

T ; ð36Þ

where J is the number of classes, n is the number of data

points, and fji is fjðxiÞ, a latent function value of ith data

point related to class j.
In the literature, the GP prior for multiclass classification

has usually been chosen to have only intraclass correlations

[3], [27]. The covariance matrix C for the prior of latent

values is defined as
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12. An outlier robust classification algorithm with � updated was
proposed in [25].

13. Using the MATLAB Support Vector Machine Toolbox available from
http://theoval.sys.uea.ac.uk/~gcc/svm/toolbox with modified kernel
functions.

14. First, we did a coarse grid search over fCj log10 C ¼ 0,
0:5; 1; 1:5; 2; 2:5; 3g to obtain C1. Then, we did a finer grid search over
fCj log10 C ¼ �0:4þ logC1;�0:3þ logC1; . . . ; 0:4þ logC1g.

15. Similarly to the selection of C, we did a two-level grid search over
flj log10 l ¼ �3;�2:5;�2;�1:5;�1;�0:5; 0g a n d flj log10 l ¼ flj log10 l ¼
�0:4þ log10 l1; �0:3þ log l1; . . . ; 0:4þ log l1g.

16. The same grids as above for parameters C; l were used.
17. k was selected by five-fold cross validation.



C ¼
Cf1 0 . . . 0
0 Cf2 . . . 0
0 0 . . . CfJ

2
4

3
5; ð37Þ

where Cfj is a covariance matrix of latent values related to

class j. The covariance function for covariance matrix C will

be defined as

Covðfji ; flkÞ ¼ �ðj; lÞcðxi;xkÞ: ð38Þ

Since we can assume that the mean is zero, the prior for

the latent function values f is pðfÞ ¼ N ð0;CÞ.
The likelihood term pðyijf iÞ, where f i ¼ ½f1

i ; f
2
i . . . fJi �, and

yi 2 f1; . . . ; Jg; is defined by using a softmax function as

follows:

pðyijf iÞ ¼
expðfyii ÞP
j expðfji Þ

: ð39Þ

The graphical model for this version of multiclass GPC is

shown in Fig. 3.
Now that we have the prior and likelihood for latent

values f , we can get the posterior of f by Bayes’ theorem:

pðf jD;�Þ ¼ pðyjfÞpðf jX;�Þ
pðDj�Þ /

Y
i

expðfyii ÞP
j expðfji Þ

pðf jX;�Þ:

ð40Þ

The class probability for the new data point pð~yj~xÞ can be

obtained in the same way as in the binary case.
We review the multiclass GPCs with the traditional GPC

formulation. In [3], the latent function was inferred by

Laplace’s method. They used the Hybrid Monte Carlo

method to integrate over the hyperparamters. In [27], the

latent function was inferred by variational methods. They

maximized the lower bound or the upper bound of the

evidence to determine the hyperparameters. In [5], the

Markov Chain Monte Carlo method was used both to

estimate the posterior of latent function values and to

integrate over the hyperparameters. Recently, a sparse

approximation method for multiclass classification in the

traditional GPC formulation has been proposed in [28]. It

uses EP with greedy active set selection of a training set

based on information-theoretic criteria.

4.2 A New Multiclass GPC Formulation

We now introduce a different representation for multi-

class classification using a new type of latent functions

gyi;jð�Þ, which are differences between fyið�Þ and fjð�Þ.
This makes it possible to straightforwardly extend the

EP algorithm for binary-class classification to the multi-

class case. Using the notation gyi;ji ¼ gyi;jðxiÞ, where

gyi;ji ¼ fyii � f
j
i , we get, using (38):

Covðgyi;ji ; gyk;lk Þ ¼ E½g
yi;j
i gyk;lk � ¼ E½ðf

yi
i � f

j
i Þðf

yk
k � flkÞ� ð41Þ

¼ E½fyii f
yk
k ��E½f

yi
i f

l
k� �E½f

j
i f

yk
k � þ E½f

j
i f

l
k� ð42Þ

¼ �ðyi; ykÞ� �ðyi; lÞ � �ðyk; jÞ þ �ðj; lÞð Þcðxi;xkÞ:
ð43Þ

This makes up the prior pðgjXÞ.
Using gyi;ji ¼ fyii � f

j
i , we can rewrite:

pðyijfiÞ ¼
expðfyii ÞPJ
j¼1 expðfji Þ

¼ expðfyii � f
yi
i ÞPJ

j¼1 expðfji � f
yi
i Þ

¼ 1

1þ
P

j6¼yi expð�gyi;jÞ :
ð44Þ

Using the vector g to denote:

g ¼½gy1;1
1 ; . . . ; gy1;y1�1

1 ; gy1;y1þ1
1 ; . . . ; gy1;J

1 ;

gy2;1
2 ; . . . ; gy2;y2�1

2 ; gy2;y2þ1
2 ; . . . ; gy2;J

2 ;

. . . ; gyn;1n ; . . . ; gyn;yn�1
n ; gyn;ynþ1

n ; . . . ; gyn;Jn �T ;
ð45Þ

we get a whole formulation:

pðgjDÞ /
Y
i

pðyijgiÞ
" #

pðgjX;�Þ

¼
Y
i

1

1þ
P

j 6¼yi expð�gyi;jÞ

" #
pðgjX;�Þ:

ð46Þ

This formulation does not decrease the expressive power of

the model. Actually, (39) in Section 4.1 has a troubling

redundancy [5]. Neal [5] suggested that the redundancy

could be removed and an arbitrary asymmetry into the

prior could be produced by forcing one of latent functions

to always be zero. If one thinks of the case of J ¼ 2, it is

clear that the GPC formulation with (39) has an extra

redundant latent function comparing to the binary GPC

formulation. The formulation in this section does not have

this redundancy and becomes equivalent to the binary-class

GPC formulation with a sigmoid likelihood function, which

can be easily seen when we look at (46).
Similarly to the binary classification case, we can define the

likelihood function as pðyijgiÞ ¼ ð1� 2�Þ
Q

j 6¼yi Hðg
yi;j
i Þ þ �. If

we put pðyijgiÞ ¼
Q

j 6¼yi Hðg
yi;j
i Þwithout � (or when � ¼ 0), the

resultant posterior of g is:

pðgjDÞ /
Y
i

Y
j6¼yi

Hðgyi;ji Þ
" #

pðgjX;�Þ: ð47Þ
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Fig. 3. Graphical model for the traditional multiclass GPC formulation
with n training data points and one test data point. xi and yi are
observed, ~x is given, ~y is what should be predicted, The function values
ffji ji ¼ 1; 2; . . . ; ng and ~fj in the plate are latent and jointly Gaussian for
each j, hence we have the undirected edges, and are conditionally
independent over different j, hence we have no edge over different j.



For EP, we can label the prior and likelihood terms in (47):

t0ðgÞ ¼ pðgjX;�Þ; ð48Þ

tði;jÞðgÞ ¼ Hðgyi;ji Þ
ðfor j ¼ 1; . . . ; yi � 1; yi þ 1; . . . ; J; i ¼ 1; . . . ; nÞ:

ð49Þ

Then, by considering tði;jÞðgÞ as a likelihood term in binary

classification, we can apply EP to this multiclass GPC in the

same way we applied it to the binary GPC. Likewise, the

EM-EP algorithm can be straightforwardly applied to the

multiclass GPC. The multiclass versions of the EP and the

EM-EP algorithm work well in practice.
For prediction, we need:

pð~yj~x;D;�Þ ¼
Z
pð~yj~g~y;�Þpð~g~yjD; ~x;�Þ d~g~y

¼
Z Y

l6¼~y

Hð~g~y
l Þpð~g~yjD; ~x;�Þ d~g~y;

ð50Þ

where ~g~y ¼ ½~g~y;1; . . . ; ~g~y;~y�1; ~g~y;~yþ1; . . . ; ~g~y;J �, and

pð~g~yjD; ~x;�Þ ¼
Z
pðg; ~g~yjD; ~x;�Þ dg

¼
Z
pð~g~yj~x;g;�ÞpðgjD;�Þdg:

ð51Þ

Using the Gaussian EP approximation to pðgjD;�Þ; the
terms in (51) are all Gaussian and, so, pð~g~yjD; ~x;�Þ is a ðJ �
1Þ-dimensional Gaussian. Then, the value of (50) is a volume
where all variables are positive in the ðJ � 1Þ-dimensional
Gaussian. This can be calculated numerically [29] or
approximated by EP.

We can consider an approximation scheme to prediction
which produces only strict class labels rather than class
probabilities. We compute ~gm;l for every possible pair of
classes m ¼ 1; 2; . . . ; J; and l 6¼ m:

~gm;l ¼
X
i

X
j 6¼yi

�ji �ðyi;mÞ � �ðyi; lÞ � �ðm; jÞ þ �ðj; lÞð Þcðxi; ~xÞ;

ð52Þ

where �ji is �i in (20) corresponding to gyi;ji obtained from EP.
Then, we choose one which most nearly satisfies ~gm;l > 0

for all l 6¼ m as follows:

~y ¼ arg max
m

~gm; ð53Þ

where ~gm ¼
P

l6¼mHð~gm;lÞ. In case none of ~gm is J � 1, we
cannot be sure which one is the most probable prediction.
Also, there can be ties where more than one ~gm is
maximum.

We also propose a simpler approximation scheme that
uses the property that latent function values are
gj;li ¼ f

j
i � fli . We use only latent functions gj


;l
i for a fixed

j
. Let us consider the case that we only use the latent
function values ~g1;l for class 1 ðj
 ¼ 1Þ. If all ~g1;l for l 6¼ 1 are
positive, we assign the test data point ~x to class 1.
Otherwise, we assign it to the class whose correponding
latent function value is minimum. The classification scheme
can be written as follows:

~y ¼ 1 if ~g1;l > 0; for all l 6¼ 1;
arg minl6¼1 ~g1;l otherwise:

�
ð54Þ

Both of those two approximation schemes work well in
practice and are simpler than the numerical integral (51),
but lose the ability to obtain probabilities for the labels.

4.3 Experimental Results

We applied the multiclass EM-EP GPC to three real-world
data sets. The detailed information for the data sets is in
Table 6. New Thyroid, Auto-Mpg, and Boston Housing data
sets were obtained from the UCI Machine Learning
Repository. In the Auto-Mpg data set, the eighth attribute,
origin, was used as the class attribute (three classes), and in
Boston Housing data set class 1, 2, 3 includes data points
where M � 15:4, 15:4 < M � 23:7, and M > 23:7, respec-
tively (M is the 14th attribute, median value of owner-
occupied homes in $1,000s).18 Table 7 shows the classifica-
tion error rates of various methods. The experiment
protocol including the initial value setting and 10-fold
averaging procedure were the same as with the case of
binary-class classification (Section 3.5.2). For prediction in
GPC, we used the approximation scheme (54) which
produces a strict class label. Results for the Laplace method
or variational method are not given since no public code for
multiclass versions of these methods was found. We did not
show the experiment results for the hard decision boundary
case, because it is clear from the binary-class experiments
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18. This discretization actually creates a three-class ordinal variable, so
ordinal regression methods may be more appropriate [30].

TABLE 6
Detailed Information on the Real-World Data Sets

(The labels “dis.” and “con.” mean the number of discrete and
continuous variables in each data set, respectively.)

TABLE 7
Classification Error Rates of Various Methods

for Real-World Data Sets



that a soft decision boundary almost always outperforms
the hard decision boundary case. For the SVM experiments,
we used the same software as in the binay-class experi-
ments. The software uses the DAGSVM method [31] for
multiclass classification. For LDA, we used J � 1 discrimi-
nant features when we have J classes.

Table 7 shows means of the classification error rates and
standard errors on the means. In all three cases, GPC-
EP(s,soft) is better than or as good as SVM-CV(s,soft). In the
New Thyroid and Auto-Mpg data sets, GPC-EP(m,soft) is
better than GPC-EP(s,soft) and in the New Thyroid data set,
the classification error of GPC-EP(m,soft) is less than half
the nearest competitor.

More information about the experiment results of the
multiclass GPCscanbefoundontheComputerSocietyDigital
Library at http://computer.org/tpami/archives.htm.

5 CONCLUSION

Based on the work of [11], [12], we presented the EM-EP
algorithm for hyperparameter learning in Gaussian process
classifiers. Experiments on synthetic and real-world data
sets showed the usefulness of hyperparameters related to
lengthscales and latent noise. GPC with EM-EP showed
better performance than SVM with cross-validation on all
the data sets used in the experiments. We derived a new
EP method and an EM-EP algorithm for multiclass GPCs
and showed that multiclass GPCs had lower test error rate
than SVMs with cross-validation on the problems we tested.

Apart from competitive performance, Gaussian Process
Classifiers also have some other advantages over nonprob-
abilistic kernel methods because they are fully statistical
models. We can use the evidence for model selection and
kernel hyperparameter optimization. Also, given new data,
we can get a class probability rather than a hard decision.
Even though we did not use it in this paper, prior information
can be used to inform learning of the hyperparameters (for
example, if some input features are thought to be more
relevant or the noise is thought to be high).

The main problem with GPCs, including the EM-EP
algorithm presented in the paper, is that it requires
Oðn3Þ computation of matrix inversions during learning.
However, sparse approaches for GPC with the EP algorithm
have recently been developed [18], [20], [28], [32] that could
be applied here. If our multiclass extension is combined
with sparse versions of EM-EP and parameterized kernels,
it could provide a powerful general classification system.
Bayesian versions of SVMs which have sparse solutions
have also been proposed in [33], [34], [35], [36], [37].
Although we did not address the issue of reducing
computational complexity in this paper, this is clearly an
important topic which has received a lot of attention.

To summarize, the main contributions of this paper are
the following:

. We have provided a detailed derivation of the EM-
EP algorithm for GPCs based on the work in [11],
[12], [17] and our own previous work [16], [25]
(Appendix).

. We have provided a theorem on the property of the
EM-EP algorithm (Section 3.4).

. We have carried out extensive empirical comparisons

of EM-EP to other classification methods (NN,LDA),

SVM classifiers, and other GPC algorithms (Table 4
and Table 5). EP-based learning of the kernel seems to

perform very well compared to other methods.
. We have derived a novel formulation for multiclass

classification suitable for EM-EP and tested it

empirically (Section 4).

We hope that these contributions will encourage others

to explore and further develop the highly flexible Gaussian

process models for learning and pattern recognition.

APPENDIX

M-STEP IN THE EM-EP ALGORITHM

We take a lower bound for the log evidence by Jensen’s

inequality as follows:

log pðyjX;�Þ ¼ log

Z
pðyjf ; �Þpðf jX;�covÞ df

�
Z
qðfÞ log

pðyjf ; �Þpðf jX;�covÞ
qðfÞ df ¼ F:

ð55Þ

The lower bound F can be written as

F ¼
Z
qðfÞ log pðyjf ; �Þ df þ

Z
qðfÞ log pðf jX;�covÞ df

�
Z
qðfÞ log qðfÞ df :

We use F�, F�cov
, and HðqÞ, respectively, to denote the three

integrals that make up F in (56). Since HðqÞ is independent

of the hyperparamenter set �, and � is independent of �cov,

we optimize F for �, by optimizing F�cov
and F� for �cov and

�, respectively.
By expanding F�cov

, we get

F�cov
¼ Eq½log pðf jX;�covÞ� ¼ Eq �

1

2
log j2�Cj � 1

2
f>C�1f

� 	

¼ � 1

2
log j2�Cj � 1

2
Eq½f>C�1f �

¼ � 1

2
log j2�Cj � 1

2
Eq½f �>C�1Eq½f � �

1

2
trðC�1Cov½f �Þ:

ð56Þ
Differentiating F�cov

for �, using the E-step result (i.e., (27)),

we obtain

@F�cov

@�
¼ � 1

2
tr C�1 @C

@�

� �
þ 1

2
Eq½f �>C�1 @C

@�
C�1Eq½f �

þ 1

2
tr C�1 @C

@�
C�1Cov½f �

� �

¼ � 1

2
tr C�1 @C

@�

� �
þ 1

2
h>C�1 @C

@�
C�1h

þ 1

2
tr C�1 @C

@�
C�1A

� �
:

ð57Þ

Using h ¼ C��, we get (31).
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