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A Bayesian Analysis for Change Point Problems
DANIEL BARRY and J. A. HARTIGAN*

A sequence of observations undergoes sudden changes at unknown times. We model the process by supposing that there is an
underlying sequence of parameters partitioned into contiguous blocks of equal parameter values; the beginning of each block is said
to be a change point. Observations are then assumed to be independent in different blocks given the sequence of parameters. In a
Bayesian analysis it is necessary to give probability distributions to both the change points and the parameters. We use product
partition models (Barry and Hartigan 1992), which assume that the probability of any partition is proportional to a product of prior
cohesions, one for each block in the partition, and that given the blocks the parameters in different blocks have independent prior
distributions. Given the observations a new product partition model holds, with posterior cohesions for the blocks and new independent
block posterior distributions for parameters. The product model thus provides a convenient machinery for allowing the data to weight
the partitions likely to hold; inference about particular parameters may then be made by first conditioning on the partition, and then
averaging over all partitions. The parameter values may be estimated exactly in O(n?) calculations, or to an adequate approximation
by Markov sampling techniques that are O(#) in the number of observations. The Markov sampling computations are thus practicable
for long sequences. We compare this model with a number of alternative approaches to fitting change points and parameters when
the error distribution is normal, then show that the proposed method is superior to the alternatives in detecting sharp short-lived

changes in the parameters.
KEY WORDS: Change points; Product partition models.

1. INTRODUCTION

Lombard (1987) considered a sequence of data consisting
of the radii of 100 circular indentations cut by a milling
machine. (The data are given in our Figure 5.) Lombard
suggested that “there may have been two increases in mean,
or even a smooth increase, between observations 20 and 40
followed by a decrease at observation 76.” We will model
such a process as a sequence of observations X, X5, ..., X,
ordered in time, each observation X; being independent with
a density depending on a parameter §; € © whose value may
change from one observation to the next. In this article we
examine problems of inference when there exists an un-
known partition p of the set {1, 2, ..., n} into contiguous
sets or blocks such that the sequence 6, 0,, . . . , 6, is constant
within blocks; that is, there exists a partition p = (ig, Iy,. . .,
ip) of the set {1, 2, ..., n} such that

0=i0<i|<i2<~--<ib=n

and
0; = 0,‘,

for r =1, 2, ..., b. The parameter values change at the
change points i; + 1, i, + 1, ..., ip—; + 1. It will be con-
venient to identify the sequence of time points i + 1, ...,
by the symbol ij and the corresponding observations X,

Given the partition and given the parameters, the obser-
vations X1, ..., X, are assumed to be independent in dif-
ferent blocks, having density [T ,’»’=1 Sii(Xi_,i)16,), where
Jii{(x;|6;) denotes the density of x;; given 6,4 = ;5 = + - -
= ;. (The notation f( - ) will be used for densities, and (- | +)
for conditional densities, of all sorts.)

In the product partition model (Barry and Hartigan 1990),
the partition is randomly selected according to a product
partition distribution: The probability of a partition p = (i,

L <i<i
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i1,02,...,lp=n)is

f(p) = Kcioilciliz ce cib_lib’

determined by prior cohesions c;; specified for each possible
block ij. As a consequence of the model, the number of
blocks b is a random variable ranging from 1 to #. See Har-
tigan (1990) for product partition models for general parti-
tions.

We now construct a prior distribution for 6, 6,, ..., 6,
as follows. Given a partition p with b blocks, 6;, 0,,, ...,
0;, are independent, with §; having density f;_,(6;) with
respect to some measure on O (which we will represent in
integrals as df). The joint distribution of all parameters is
now determined, because all parameters in the jth block are
equal to ;. The density f;(6;) will be called the block prior
density. The combined model for partition and parameters
is the product partition model.

For a given block ij, the density of the observations X; is

5506 = [ 1010)5460) do.

The conditional distribution of partition and parameters
given the observations is also a product partition model with
posterior cohesions c¢; f;(X;) and block posterior density
Si(0;1.Xy) = £;(0) fi( Xi16)1/ fi1(Xip) -

Thus product models on partitions give us a workable
framework for making inferences about change points based
on the data X, . . ., X,,. Even if the initial probability model
for partitions and parameters is not a product model, in
circumstances where the observations are sharp enough to
dominate the prior distribution the posterior distribution for
partitions will be usefully approximated by a product model,
because the contribution from the density of observations
given parameters will be in product form.

Many different types of problems may be tackled in this
framework. We will consider in some detail the normal errors
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model, in which it is supposed that the observations X; are
independent N(u;, 0?). The normal assumption could be
replaced by any other parametric assumption and similar
analyses carried through. Also, the independence hypothesis
could be weakened, because all that is required is that, given
the partition and given the parameters, observations in dif-
ferent blocks are mutually independent.

As an alternative to the product partition model, we might
suppose that the parameter sequence 6; forms a Markov
chain; for there to be constant blocks, we need a transition
distribution in the following form: Given 6,, 6,,, equals 6;
with probability 1 — p; or has density f(6;.,|6;) with prob-
ability p;.

If the p; are small, then the blocks of constant parameter
values will be long. If the conditional density of 6;,, given
0;, when there is a change, does not depend on 6;, then the
Markov model is a product partition model. In general,
however, the two models are different.

We will consider a number of change point analyses for
the “normal errors” model. One kind of analysis uses pe-
nalized likelihood to select the partition, without any further
probabilistic assumptions about the partition or the param-
eters. For example, Yao (1988) selected p to maximize the
Schwarz criterion

L(p) = —nloga, — blogn,

where o, is the maximum likelihood estimate of ¢ for par-
tition p and b is the number of blocks in p.

There are various Bayesian analyses depending on the
particular prior distributions chosen for partitions and pa-
rameters. One such model is due to Chernoff and Zacks
(1964). The sequence of parameter values forms a Markov
chain in which, given y;, w;+; = w; with probability 1 — p
and is distributed as N(u;, o) with probability p. Thus there
is a change at point i with probability p, and if the change
occurs, the parameter value changes by a normally distrib-
uted increment. This model is a Markov model, but not a
product partition model.

Yao (1984) gave the same probability to a change; but if
the change occurs, the new parameter value is distributed as
N(uo, 03). Thus parameter values in different blocks are
independently distributed. This model is both a Markov
model and a product partition model. Because it is a product
partition model, it is possible to compute exact posterior
means for the y; in O(n?) computations. There remain dif-
ficult problems in estimating the parameters p, o, g9, and
uo; Yao suggested using maximum likelihood with the con-
straint that p < .2, but in Yao (1984) the computations are
done using an approximation for the posterior means rather
than strict likelihood calculations.

In Barry and Hartigan (1990) we considered a model in
which the partition distribution used cohesions of the form

c=—072 for 0<i<j<n,
cy=(—i)72 for i=0 or j=n,

and
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These partition distributions lead to desirable consistency
properties for the posterior partition distribution; for ex-
ample, if there is no change point, the posterior probability
that there is no change point approaches 1. But we did not
find that this partition distribution gave better mean square
errors for the posterior means than did the Yao model when
the parameter p was appropriately estimated from the data.

Here we examine a product partition model in which the
probability of change at point i is p, independently at each
point i. The prior distribution of the parameter u; for block
ij is N(mo, 03/(j — i)). In asserting this prior, we are ex-
pecting larger deviations from g in short blocks than in long
blocks; it is not feasible to identify small deviations in short
blocks, a presumption that is built into the prior probabilities.
A happy side effect is that the posterior distributions of par-
titions and parameters are much simplified, and it becomes
possible to explicitly integrate out the nuisance parameters
D, o, 69, and uo, thus avoiding the un-Bayesian inelegancies
of maximum likelihood on a likelihood function that may
have several modes.

We compare methods of Schwarz (given in Yao 1988),
Chernoff and Zacks (1964), Yao (1984), and Barry and Har-
tigan (1990) in a simulation experiment. A sequence of 60
observations is taken from a change point scene, and esti-
mates of the parameters are computed for the four methods;
these estimates are maximum likelihood for the optimal
choice of p using the Schwarz criterion, and posterior means
in the other cases. The estimates are exact for Schwarz and
for Yao, and based on simulations of posterior distributions
for Chernoff and Zacks and Barry and Hartigan. We consider
100 repetitions for each scene, and 20 different scenes.

The Schwarz method is inferior for almost all scenes. The
Barry and Hartigan method does best for scenes with outliers
or short sharp signals, as might be expected from the prior
assumptions. The Yao method does best when the signals
are strong and the block lengths are regular. The Chernoff
and Zacks method does well when the changes are small and
persistent but poorly when the changes are large or persist
for only a few observations. Looking over all the scenes,
Barry and Hartigan never does much worse than the best
method and avoids the disasters of the other methods for
sharp short-lived changes.

In Section 7 we apply these four methods to Lombard’s
data. The data were collected to measure the variability in
output from the machine, and any undetected shifts in mean
would result in inflated estimates of that variability. Inspect-
ing the fitted means gives an indication of the magnitudes
and locations of such mean shifts. Other applications are
discussed in Section 8.

What advice do we have for the practitioner who wishes
to fit a change point model? First, we need the parameter
values in different blocks to be independent. For many kinds
of data, if a change occurs, the new parameter values are not
too far from the old; for these kinds of data, the Chernoff-
Zacks method is more appropriate. Similarly, these tech-
niques will not be effective for spline fitting with, say, piece-
wise linear models holding in different blocks, because the
requirement of independence in different blocks will prevent
continuity across segment boundaries. If the independence
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assumption is acceptable, then the method we propose can
detect change points accurately and efficiently, identify suf-
ficiently large outliers and remove their effect from the rest
of the model fitting, and avoid seizing too quickly on modest,
briefly sustained random departures as evidence of a new
segment. The product partition model is sufficiently simple
such that a Bayesian analysis is possible for all parameters;
one by-product of the analysis is a posterior distribution for
various times being change points and for the number of
change points, so that a judgment of whether or not a change
point model is necessary can be made after the analysis.

An important practical consideration is that some prior
constraint is necessary on the number of change points and
on the amount of variability between blocks that we wish to
see before constructing new blocks. These are parameters
about which the data cannot be relied on to be conclusive.
We have found, for example, that constraining the proba-
bility of a change at any point to be less than .2, as was first
suggested by Yao (1984), is a useful rule. In practical prob-
lems we expect to estimate p to be quite a bit less than this,
because we do not want to see a change every five observa-
tions. An associated rule is that the “signal” variance o3
should exceed the error variance o2 by a factor of 4; this
means, for example, that we do not identify an observation
as an outlier unless it is at least two standard deviations from
the neighbouring segment means.

2. EXACT COMPUTATIONAL PROCEDURES

Although there are 2”~! partitions of » points into blocks
of consecutive segments, the product partition model permits
calculations of necessary quantities in polynomial time de-
pending on the number of possible blocks, ("3'). Similar
recursive calculations are possible for more general product
partition models.

Define \; = 2 [17-: ¢;_,;,» Where the summation is over
all sets of integers i = ip < i, < + + + < I, = j. The quantity
A;j is the sum of products of cohesions over all possible par-
titions of the set {i + 1, i+ 2, ...
be the probability that the block ij is included in the partition
p. Then

_ Aoi CijAjn

tij )\0
n

The quantities Ao; and A;, may be calculated in O(n?) steps
using the recursive formulas

Aot = Cois
i
Noi+1 = Coi+1 T 2 NokCri+15
k=1
)\n—ln = Cn—1n;

and
n—1
)\jn = Cjn + z cjk)\kn
k=j
Suppose, for example, that the parameter 6, is real valued
and we wish to compute its posterior expectation given the
observations X. The posterior relevances r;;(X ) are computed

,j}. Let the relevance r;; -
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from posterior cohesions by recursive formulas like those
just listed. Then

E(01X) = 2 Ey(6ic] Xy)ry(X),

i<ks<j

where E;(0;| X;;) denotes the posterior expectation of §; when
the block ij lies in the partition.

For each k there are O(n?) sets ij that contain k, and so
{E(6;1X):i = 1,2, ..., n} may be calculated in O(n?)
steps. The preceding recursive formulas were given in the
normal case by Yao (1984).

Because for p = (io, iy, ..., i) the likelihood of X and p
is

b
L(X,p)=K H {ﬁ_li,(x)ci,_li,},
r=1
the likelihood of X
L(X) = 2 L(X, p)

P
and its derivatives may also be calculated in O(n?) steps
using similar recursive formulas. These computations are
useful in estimating the various nuisance parameters in the
model.

3. NORMAL ERRORS

In this section we consider in detail the case where the
observations X, X5, ..., X, are independent given the se-
quence of parameters w; with X; ~ N(u;, ¢2),i=1,2,...,
n. To specify a product partition model, we need to choose
the prior cohesions c; and the block prior densities f;;(u).

3.1 Choosing the Prior Cohesions
Following Yao (1984), we use
;=1 —p)Y " 'p, j<n
and

=(1=-p)Y™7"', j=n,

" where 0 < p < 1. This choice implies that the sequence of

change points forms a discrete renewal process with inter-
arrival times identically and geometrically distributed.

3.2 Choosing the Block Prior Densities

We propose f;;( ) to be the density of N(uo, 03/(j — i)).
In this way we allow weak signals provided that there are
sufficient data available to estimate them. The prior gives
higher probability to small departures from wq in large blocks
than it does in small blocks; we can expect to identify small
departures if they persist for a long time.

Using this model, the density of the observations .X; for
a given block ij are

Ji(Xy) =

1 0,2 172
(2mo?)U=2 (6(2) + 0'2) exp(Vy), (1)

where

2l (=X’ U= DK~ o)’
202 2(op + 0?)
with X = 20 X0/ (G — 0).

sz =
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Given the partition p, the estimate of u, for r E ij E p is
fiy = (1 — w)X; + wuo, (2

where w = ¢2/(03 + ¢2).

Yao (1984) has considered a similar model, except that
fi(w) is the density of N(uo, 03). Given the partition p, the
estimate of u, forr E j E p is

iy = (1 — wy) Xy + wyno,

where w; = ¢2/((j — i) o} + o).

Both of these models depend on four parameters: p, ug,
o2, and o2. Only the interpretation of ¢3 differs from one
case to the other. Yao (1984) proposed choosing these pa-
rameters to maximize the likelihood function defined by

L(pa Mo, 0'%), 02) = Ef[xlp]f[p],

where f[X | p] is the probability of the data X given the par-
tition p and f[p] is the prior probability of p. Because L(1,
wo, 62,0) = L(p, uo, 0, ¢2) for any values of p, uo, and o2,
the model is not identifiable. In response to this Yao proposed
maximizing the likelihood subject to the constraint p < py,
where po € (0, 1) is a prespecified number. But Yao computed
approximations to the posterior means rather than the exact
posterior means. In implementing the maximum likelihood
approach, we will use the exact computations as outlined in
Section 2.

For our model, we pursue a fully Bayesian approach by
specifying independent priors for each of the parameters p,
po, 62, and w = ¢2/(ed + ¢2). We let

flwo) =1, —oo=<po=< o0,

f(e?) =1/¢2, 0<¢?< o0,

f(p)=1/p, 0=<p=po,
and

Sw) = 1/wy, 0<w=w,

where po and wy are prespecified numbers in [0, 1]. The first
two priors are chosen to generate estimates invariant under
location and scale changes. The restrictions on the ranges of
p and w are designed to make the technique effective in sit-
uations where there are not too many changes (p small) and
where the changes that do occur are of a reasonable size (w
small).
Using this prior, we have that

© 1
STl wl e [ T fix,) do?,
0 O iice
where f;,(X;) is given by (1). Hence

wb/2

[W+ Bw + wn(uo — X)?]"*°

f[X Ipa Mo > W] oC (3)
where b = num_ber 9f blocks in p, X = DL, /\:i/n,
B= 2, (J—i)(X;—X)?,and W= Z e, Zoiy (X — X)2.
Averaging (3) over uo and w gives

w(b=1/2

W + By -

Xl [
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Also,

1 Do
1(p) —;()fo flolpl dp

_i 7o b—-1 _ n—b
—po[fop (1—-p) dp].

Hence

SleIXT=f1X1p1f1p1/fX]

fwo w(b=D72 Do . L
<[] g [ - o)

These integrals are incomplete beta integrals. For 1 < r
<n,

E[w|X]= 2 E[wIX, p1f[p]X]

=2 E[(1 — w)X; + wuolx, p1fIp| X].

P
Using (3), it follows after some calculation that
E[uolw,X,p]=X

and
E[w|X, p] = w*,
where
N W (Bb+D/2
o e B
w* =
N w(b—1/2
0 oo AW
[W + Bw]
Hence
E[p|X]= 2 [(1 —w*)X; + w*X]f[p| X].
P
Likewise,

E[¢*|X]= X El[o*|p, X1f[p|X].

P

Using the fact that

1
f[o.Z, Ho> Wlpa X] oC ;_—2' HﬁJ(XU)9

ij€p

we get after integration that

w(&=D/2
wo__ " aw
2 1% [+ Bw)n 2
E[U |p, X] = n w(b_l)/z

— 3 w
Jo" Gt e 4

It should be noted that f[p| X ] is not in product form, and
so the iterative calculations described in Section 2 are not
possible here. In the next section we describe how Markov
sampling may be used to achieve a satisfactory approxima-
tion to E[u, | X].

Chernoff and Zacks (1964) considered a slightly different
model in the context of estimating u,,, the “current mean,”
given data X, X5, . .., X, with X; distributed as N(y;, o).
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They assumed that the sequence of parameter values u;, us,

., un forms a Markov chain with u;,, = u; + 6; where §;
= 0 with probability 1 — p and §; is distributed as N(0, ¢3)
with probability p. Hence, writing 6, = 0, we have

i
wi=wmt 29

j=1
fori=1,2,..., n. For convenience we parameterize in
terms of A = 02/ 03 and o2 rather than o3 and ¢2.

Writing 6 = (8;, 02, ..., 6,), we have for the partition p

=(i0) i13~'-,ib)a

pk—l(l _ p)n—k)\ (k—1)/2

an+k—1

f(p’ 6a #19629 A,plx) oC

X exp(— %)fwl)f(x)f(a%f(p),

where f(u1), f(N), f(¢2), and f(p) are the prior densities
and

n i 2 n
G= Z(Xi—/.l,j— Z 51) +>\25,2

i=1 Jj=1 i=1
Following Chernoff and Zacks (1964), we set f(u;) = 1, —o0
< < 0. As before, we set f(o2) = 1/6%,0 < ¢ < 00 and
f(p) = 1/py, 0 < p < po, where p, is a constant. For A we
consider the prior f(A) = 4 exp(—AN), 0 < X\ < oo, where
A is a constant. Using these priors, we can integrate over p
and u, to get

f(p, 8, 0%, A X)

Do (b-1)/2
oc“o pb“(l—p)”‘bdp}—am—exp(—Gl/ZJZ), 4)

E(e-zo - (E(v-22)) /-

n
+ (Z 82 +A))\. (5)
i=1
Given p = (i, i1, ..., ip) and A, the posterior means
Rijs Rips - - - » Ri, can be calculated by iteratively solving the
system of equations
i

(i + Ny — Mag = 1—21 X,

_Aﬁr—l + (lr - ir—l + 2)\)ﬁr - )\ﬁr+l = ; z Xl,
=i_1+1
r=2,3...,b—1,
and
Mooy +(n— iy + N = 2 X (6)

I=ip1+1

In the next section we demonstrate how Markov sampling
may be used to calculate E(u;|X) by repeated sampling
from (3).

313

4. MARKOV SAMPLING
4.1 The General Technique

The Markov sampling technique originated in statistical
physics (Hammersley and Handscomb 1964; Metropolis,
Rosenbluth, Rosenbluth, Teller, and Teller 1953) and more
recently has found wide application in image processing
(Cross and Jain 1983; Geman and Geman 1984). To sample
from a finite random variable Z having density f, we devise
a Markov chain with transition probabilities f( Y | Z ) chosen
so that the corresponding stationary probabilities are f( Z).
We begin with some arbitrary starting value Z, and compute
the Markov sequence Z,, Z,, . . ., Z,, according to the tran-
sition probabilities (Y| Z). Under certain conditions, the
frequency of occurrence of the states Z; converges to the
stationary distribution f(Z).

We will use a transition matrix based on conditional dis-
tributions that appeared in Geman and Geman (1984). (They
sampled from Gibbs distributions and called their method
the Gibbs sampler, but it seems unfortunate to give that
name to a method that can be used for sampling from any
kind of distribution.)

To explain the technique, assume that U and V are finite
variables with a given joint density f(u, v) and conditional
densities f(u|v) and f(v|u). We begin with some initial states
U°, V°; a transition matrix for generating new states U’, V'
from states U'™!, V™! is defined as follows:

St o' w0t = f o f(v'u).

Thus we generate U’ from the conditional density of U
given ¥ = v'~! and then generate V' from the conditional
density of V given U = u’. The joint density f(u, v) is a
stationary distribution for this transition matrix, as can be
seen by algebra or by supposing that the initial states have
the density f(u, v); then V° has the correct marginal density
and U! has the correct conditional density given V'°, so U',
V° has the correct joint density. Continuing one more step,
U', V! has the correct joint density, which is the same density
as U% V°, so f(u, v)isindeed a stationary distribution. For
a finite chain, the stationary distribution is unique if the
chain is irreducible; that is, if there exists a path of transitions
of positive probability between any two states of the chain.
For our problem, we require that for each pair («, v) and
(u’, v') of positive probability there exists a sequence u'
=u,v' =0, u? v ..., u" =u,and v" = v’ such that
f(u', vi7)y > 0 and f(u', v') > 0.

When the stationary distribution is unique, the limiting
distribution of the sampled points U’, V' is just the required
density f(u, v). More generally, if we have n variables U,
..., U, such that each state of positive probability can be
reached from each other such state by transitions of positive
probability, then we generate a sample with limiting distri-
bution f(u,, u,, . .., u,) by beginning with some u9, .. .,
u% and making the transitions one variable at a time con-
ditional on the values of the other variables. We select U
from the density f(u|u', ..., uhey, uih, ..., ui").

How does this apply to generating a distribution over par-
titions? For » observations, let U; = 1 if §; = 0,,, and let U;
= 0if 6; # 0,4, for | < i < n. Then the transition at U; is
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to 1 or 0, according to the probabilities of partitions f( U,,
Ui, LUy oo oy Upmp)and f( Uy, .., Uiy, 0, Upsy,
o5 Un-1).

4.2 Calculation of the Bayes Estimate

A pass through the data selects for each i in turn a value
for U; from the distribution of U; given X and the current
values of Uj, j # i. We initialize all U; to be 0.

Consider position i > 2. Let b denote the number of blocks
we obtain if we set U; = 0. Then

P(Ul =le, (]j,]#l)

L2 pb(1 — p)" dp]| [ we” dw
0 O (W, + Byw)nh/2
= (b-1)/2 4
Po  p_ n—b wo w
1 - d,
[fo P’ ( D) p][ 0 (W0+BOW)("_1)/2 dw]

where W is the within-block sum of squares and B, is the
between-block sum of squares we obtain with U; = 0; W,
and B, are similarly defined. Hence we can calculate f( U;
= 1|X, U}, j # i) and so sample U; at random.

Having completed a pass through the data, we now cal-
culate the posterior mean of u; given the current partition p
and X using (2). At the end of M passes, we use the average
of the M estimates of u; as an approximation to the posterior
mean of u, given X. Likewise, we calculate the posterior
mean of o2 given p and X and use the average over the M
passes as an approximation to the posterior mean of ¢% given
X. We find that M = 50 to 500 gives adequate approxima-
tions to the posterior mean. '

4.3 Calculation of the Chernoff-Zacks Estimate

We wish to sample from f(3, o2, \| X) given by (4). We
initially set A\ = 1 and 6, =0,i=1,2, ..., n.

Each pass through the data consists of generating a value
for ¢% given X and 8, then a value for A given o2 and 4, and
then for each i > 2 a value for §; given ¢2, \, and 0, j F 1.
Given )\ and 6, G,/ 6% ~ X2,p_», where b is the number of
blocks in the partition and G, is given by (5). Given ¢2 and
6, (212 08%2/0%+ 24A)\ ~ Xx3,,. Given o2, \, and 0,,J F i,
let b be the number of blocks obtained if we set 6; = 0. Then
6; = 0 with probability 1 — p;, and §; is distributed as N(«;,
%) with probability p;, where

G- DI XE—(n—i+ 1) T XF

“i A+ (G- D(n—i+1) ’
8 = ne’
N+ (G -Dn—i+ 1)’
o Jo Pt =p)ttdp
L=pi  [op"'(1—p)"tdp
nA

1/2
M+ (i— )(n—i+ 1)] exp(a/267),
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and
k
Xi=X— X%, k<i
j=1
i-1 k

j=1 j=i+1

k=1.

After each pass, the posterior means of y; given the current
p and A are computed using (6). At the end of M passes, we
use the average of the M estimates of u; as an approximation
to the posterior mean given the observations. Likewise, we
use the average of the M-generated values of ¢2 as an ap-
proximation to the posterior mean of o2 given X. The general
approach is similar to the EM algorithm, in that we identify
conditioning variables p and A for which the conditional
posterior means are easy to compute, and then average these
conditional means over sampled values of p and X to get an
estimate of the posterior means conditioned only on the ob-
servations.

5. THE DESIGN OF THE SIMULATION STUDY

A Monte Carlo study was carried out to assess the effec-
tiveness of the Barry-Hartigan estimate and to compare it
with the Yao method, the Chernoff-Zacks method, and a
method based on the Schwarz criterion. Evaluations were
carried out for various partitions and parameter values u;
each partition and parameter sequence is called a scene.

5.1 The Estimators

Four methods of estimation were considered:

1. B-H: the Bayesian estimate of Section 3 with p, = .2
and wy = .2. These choices of (pg, wy) were made after ex-
tensive experimentation over various scenes.

2. YAO: Yao’s method with p, = .2, the value proposed
in Yao (1984). We experimented with other values for p,
but found that py = .2 performed best over a wide variety
of scenes.

3. C-Z: The method of Chernoff and Zacks with p, = .2
and 4 = 1.0; the value 4 = | means that the expected value
of the ratio of the error variance ¢ to the parameter jump
variance ¢} is 1. Other values of 4 did not change the be-
havior of the method very much.

4. SCHWARZ: A method based on Schwarz’s criterion
described in Yao (1988), which chooses a partition p to
maximize —n log 6, — b log n, where b is the number of
blocks in p and 4, is the maximum likelihood estimate of ¢
given p. Having selected p, the u’s are estimated using the
observed block means. In using this method we restricted
the search for a maximum to those partitions with fewer
than »n/2 blocks.

5.2 The Scenes

Given values for n, p, uo, w, and o2, we generate scenes
as follows. For 1 < i < n, the probability that a change occurs
at position i is p independently of what occurs at other sites.
Given the blocks of the partition p so generated, the mean
value y; for block ij is chosen at random from the density of
N(uo, 03/(j — i)), where 63 = o%(1 — w)/w. The data
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Table 1. Comparison of Methods for 20 Scenes
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Scene B-H YAO c-z SCHWARZ
One Group
1. 60° 2.40% 1.84" 1.75% 3.05*
Two Groups
2. 40° 20° 2.24" 2178 3.74% 3.047
3. 40° 207 2.42" 2.378 2.76" 2,778
4. 30° 30' 2.63"® 2.82° 2.267 3.58%
5. 300 30°%5 2.04" 2.267 1.78° 3.16%
6. 580 23 2.90* 5.16% 317" 3.19%
Three Groups
7. 15° 302 15° 277 2.915 2.628 3.84"°
8. 10° 40" 10° 2,60 2.70° 2.39% 4.40"
9. 30° 202 10° 3.08'® 3.13° 3.19° 3.40%°
10. 4° 15 55° 3.32%2 6.86%° 7.61% 3.09'®
Four Groups
11. 10" 15° 202 15’ 2.46° 2.40° 2.39° 3.69"
12. 10" 102 10" 30° 2.21° 2.34% 1.974 3.54"
13. 252 1° 145 20° 2.46" 2.68* 3.818 2.83"
14. 15° 5° 55 35° 2.48" 3.02¢ 6.897 2,74
Five Groups
15. 50 52 40° 52 5° 3.17% 3.29° 4.038 4.97"
16. 120121120121 12° 2217 2.10* 2.18% 3.627
17. 120121122123 124 2.297 2.28° 1.85% 3.87"°
Eight Groups
18. 143551912 45 2.48" 2,615 5.23'° 3.87"
9215°% 114
19. 2 19° 20" 154 5' 2.40° 2,748 4.37° 3.32"
155°3!
Ten Groups
20. 6° 62 6° 62 6° 2.99° 2.858 4.88° 5.26"
6% 6° 62 6° 62

NOTE: For each method we give the mean sum of squares per block over 100 repetitions. The superscript is the standard error of the mean for
B-H; for the other methods it is the standard erorr of the difference between the mean and the mean for B-H.

values X, are then generated by adding independent N(0,
o?) errors to u;.

Throughout we use #n = 60, go = .0, and ¢*> = 1.0. A
number of scenes were generated by choosing p’s at random
from U(0, .1) and w’s from U(0, .2). The scenes chosen for
inclusion in the study, shown in Table 1, are representative
of those generated. We use the notation 5° 5240° 52 59, for
example, to denote a partition into five blocks of lengths 5,
5, 40, 5, and 5 and parameter values 0, 2, 0, 2, and 0. Scenes
numbered 16 and 20 were included to favor Yao; scene
number 17, to favor C-Z. For scenes chosen according to a
certain prior distribution, the posterior Bayes means ac-
cording to that prior must have minimum mean squared
error (MSE) compared to any estimate, when the errors are
averaged over that prior distribution. We thus expect the
B-H method to be tautologically superior to the others when
averaged over the scenes sampled from the prior. It is nev-
ertheless of interest to compare the MSE’s of the different
methods in each scene, to identify situations where the var-
ious methods are superior.

The values of p, = .1 and wy = .2 were used to generate
scenes with relatively few blocks and relatively large jumps.
The inconsistency between the values used in generating the
scenes and those used in the B-H method arises because we
discovered a need to overfit the number of blocks to produce
low MSE’s in the posterior means. If there is a relatively
small difference between a block mean and its neighboring
means, then it is likely that the block will not be detected
and might make a substantial contribution to the MSE’s. To
prevent this, we increase the likelihood of detection of slightly

different blocks, while at the same time increasing the chance
of discovering false blocks and so overestimating the number
of blocks. Therefore, we encourage more blocks by allowing
p and w to take larger values in the fitting than in the con-
struction. In practice we would constrain, say p < .2, even
though we do not anticipate blocks of average length 5; this
permits somewhat more blocks in the fitting than we really
believe are there.

5.3 Implementation

For each of the 20 scenes chosen, 100 sets of data were
generated. For each of the four estimates, we calculated the
sum of squared errors per block (SSPB), defined as the sum
of squared errors divided by the number of blocks in the
true partition. If the true partition were known with certainty,
the estimate within each block would be the block mean,
the contribution of each block to the expected sum of squared
errors would be 1, and the total expected sum of squared
errors would be the number of blocks. Thus the SSPB is a
standardized measure of error for each scene, which would
ideally be 1 if we could surely identify the correct partition.

For the Bayesian methods, we found that M = 110 passes
through the data, omitting the first 10 passes from the esti-
mation process, gave accurate approximations to the pos-
terior means. For the C-Z method, we found that more
passes were required for accurate determination of posterior
means. This is largely due to a greater degree of autocorre-
lation between passes, caused by the need to sample 6 at each
pass. After some experimentation, we used M = 510 and
omitted the first 10 passes from the estimation process.



316
X
X
< - X
X
N —
o -
X
X
X
C}l —
X
T T T T T T T
0 10 20 30 40 50 60
Figure 1. Fitted Values in a Particular Sample for Scene 2. - - -, True;
X, Data; ——, B-H; ----- , YAO; -O-, C-Z.

5.4 Bias Adjustments for Markov Sampling

The estimates based on Markov sampling converge to the
posterior means as the number of passes, M, increases. How
should M be chosen? In the following analysis, the obser-
vations are regarded as fixed; we consider only error due to
the Markov samphng Let F; = E(u;|x) be the posterior
mean of u; and let Fy; be the estimate of F; based on M
passes through the data. Then, for M large,

Fyi=F; +ny,

where n; has mean O(1/M) and variance proportional to
1/M. The mean is O(1/M), because F; is the average of
M conditional means given the M sampled partitions, and
these conditional means have average value that approaches
F; exponentially fast as M — oo. This follows because the
k step transition matrix of a Markov chain converges ex-
ponentially fast to the stationary distribution in all rows.
(We also reduce the bias in 5; by ignoring the first few Markov
samples.) The assumption of variance proportional to 1 /M
derives from the approximate independence of the sampled
p in well-separated Markov passes. Hence writing R for the
SSPB using F; and R, for the SSPB using F,;, we have

E(Ry) = E(R) + B/IM + O(M™?),

where B is a constant depending on #. To correct for this
bias, we recorded for the kth data set the SSPB R; s> for
estimates based on the first A//2 passes, the SSPB Ri’ M2
for estimates based on the second M /2 passes, and the SSPB
Ry for estimates based on all M passes. The jackknifed
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quantity

100

aa'j Z [2RkM
k=1

is a less-biased estimate of E(R), the expected value of SSPB
if the exact posterior means had been used. To get an idea
of the magnitude of the bias, we also recorded the unadjusted
estimate of E(R) given by R = 2 }% Ry »,/100. We took M
large enough so that the differences between the adjusted
and unadjusted estimates of MSE were negligible.

There is also an increase in the variance of R due
to the Markov sampling. For M large, this increase is of
order 1/M, and we estimated it by [2Z1% (R
= R}.1/2)*1/(2)(2)(100).

6. THE RESULTS OF THE SIMULATION STUDY

The results of the simulation are displayed in Table 1. For
YAO and SCHWARZ we report the mean SSPB; for B-H
and C-Z we report the bias-adjusted mean SSPB. The stan-
dard error (SE), given as a superscript, is the SE of the mean
for B-H and for each of the other methods is the SE of the
difference between the mean and the mean for B-H. For
ease of presentation, we use a superscript of 29 to denote a
standard error of .29.

Computations on a 20 mHz PC for a single sample from
scene 15 took 121 seconds for B-H, 342 seconds for YAO,
162 seconds for C-Z, and 5 seconds for SCHWARZ. It
should be noted that Yao (1984) recommended an approx-
imate technique for estimating posterior means that would
considerably improve the given time.

(Rimp2 + RE 042)/21/100

0 10 20 30 40 50 60
Figure 2. Fitted Values in a Particular Sample for Scene 10. - - -, True;
X, Data; ——, B-H; ----- , YAO; -O-, C-Z.
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Figure 3. Fitted Values in a Particular Sample for Scene 17. - - -, True;
X, Data; ——, B-H; ----- , YAO; -O-, C-Z.

The bias corrections for both B-H and C-Z were quite
small, ranging from 0 to .10 for B-H and from 0 to .15 for
C-Z. In addition, the increase in the SE of the mean SSPB
caused by the Markov sampling was small—less than 10%
in all cases and usually much less than that. This indicates
that for each method, the number of passes used was suffi-
cient to allow accurate comparison with other methods. In
a practical application of either method, it would be sensible
to use more passes in the Markov sampling than was feasible
in a large-scale simulation study such as this; for example,
use M = 500 rather than M = 100.

The most obvious conclusion from Table 1 is that
SCHWARZ compares quite poorly with the three Bayesian
methods with specific priors, but does better than YAO or
C-Z for short sharp signals. Because SCHWARZ method is
forced to opt for one partition, it either does very well when
it selects correctly or very badly when it selects incorrectly.
In contrast, the Bayesian methods allow for uncertainty about
which is the correct partition by weighting various partitions
according to how much evidence in their favor the data con-
tain.

In Figures 1-4 we show plots of the fitted values for ex-
amples from Scenes 2, 10, 17, and 20. Each plot shows the
underlying scene, the raw data, and the fitted values for
B-H, YAO, and C-Z.

C-Z works well when the changes are small and persistent
but poorly when changes are large or persist for only a few
observations. YAO works well when changes occur regularly
and when the sizes of the changes do not exhibit much vari-
ation, but does not handle outliers well. B-H is nearly always
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close in SSPB to the other techniques and does considerably
better when the underlying scene consists of irregularly dis-
tributed changes of variable magnitudes; it also handles out-
liers better than either of the other methods.

The behavior of C-Z is well illustrated by the figures. In
Figure 1 (scene 2) we see that C-Z is slower to react to sharp
changes than either of the other methods. In Figure 4 (scene
20) we see how C-Z fails to pick up changes that last for
only a few observations; however, the results for scenes 4
and 5 indicate that C-Z reacts better than the other two
Bayesian methods to small changes that persist for a long
time. It does slightly better when the scene consists of gradual
changes, such as scene 17; however, Figure 3 (scene 17) il-
lustrates the similarity of the three estimates in this case.

The difference between YAO and B-H is well illustrated
by a comparison of Figure 2 (scene 10) and figure 4 (scene
20). YAO does well for scene 20, where the true scene consists
of 10 blocks all of length 6 and with all jumps being equal
to 2; however, it fails completely to react to the short sharp
change of scene 10. Because the block prior densities for
YAO are identical across all blocks, YAO cannot cope with
scenes that suggest that different prior densities are appro-
priate in different blocks. In scene 10 YAO would need to
use a large value of o3 to react appropriately to the short
sharp jump and a small value of ¢3 to do sufficient smoothing
elsewhere; it opts for a small value and moves all estimates
towards the overall mean. B-H, on the other hand, auto-
matically scales the prior variance because it uses od/(j —
i) for block ij, which allows it to use simultaneously a large
variance for short blocks and a small variance for long blocks.

X ~°°tttoo 7Tt D S
X
X
X
X
X x X
X X X
- ] X X
X
X

N X

T T T T T T I

0 10 20 30 40 50 60
Figure 4. Fitted Values in a Particular Sample for Scene 20. - - -, True;

X, Data; ——, B-H, ----- , YAO; -O-, C-Z.
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B-H can, therefore, be sensitive to short sharp changes with-
out having to be overly sensitive to mere random deviations
in long blocks.

There is, however, a price to pay for the extra sensitivity
of B-H. This can be seen most clearly in the results for scene
1, the case of no changes. In 84 of the 100 repetitions YAO
fit the sample mean, whereas B-H fit the mean in only 12
of the repetitions. C-Z fit the mean for only 19 of the rep-
etitions but rarely reacted very strongly to random deviations
in the data and so performed well in MSE terms. B-H was
overly sensitive to random fluctuations in the data, mistaking
them for changes.

Looking at the results overall, we conclude that B-H is
preferable in a minimax sense, because it never produces
the disastrously large MSE’s of the other methods and pays
only a modest price for this degree of safety.

7. APPLICATION

We illustrate the techniques compared in the simulation
study using data of Lombard (1987), which give the radii of
100 successive circular indentations cut by a milling machine.
Figure 5 shows the raw data and the estimated means pro-
duced by the three Bayesian techniques. SCHWARZ fits one
mean, yielding a value of .01005 as an estimate of the process
variability 2. The three Bayesian techniques produce quite
similar results. The phenomena described by Lombard—an
increase between 20 and 40 and of a decrease at observation
76—are evident. In addition, there is evidence of a dip in
mean value around observation 55 and a steady increase
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Figure 5. Comparison of Fits From Bayesian Methods Applied to Lom-
bard’s Data. X, Data; ——, B-H; ----- , YAQO; -O-, C-Z.
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after observation 84. The estimates of o2 were .00857 for
B-H, .00835 for YAO, and .00898 for C-Z.

Even though the change points are not distinct in this
application, the Bayesian models express appropriate un-
certainty about the change points and give a plausible adap-
tive smoothing of the original observations. The estimate
from C-Z is smoother than that from either YAO or B-H.
The B-H estimate agrees closely with the C-Z estimate except
at observations 25, 85, and 88. These might be considered
outlying observations; the B-H estimate, being sensitive to
short sharp changes in the underlying means, reacts to them
as if a change in mean might have occurred. The reaction is
localized in the sense that only the fitted value corresponding
to the suspected outlier is affected. The YAO estimate reacts
less sharply to these suspected outliers, at least in a local
sense, but is generally more variable than the B-H estimate.
This is due to the fact that the maximum likelihood choice
for the parameter p in this case was p = .15. Outliers en-
courage high values of p and so have a global effect on the
Yao estimate, in contrast to their sharp local effect on the
B-H estimate.

8. EXTENSIONS

The Bayesian methodology developed in this article can
be extended to provide solutions to many other changepoint-
like problems. Allowing positive prior cohesions for con-
nected subsets only is appropriate for time-ordered obser-
vations, for example. But there is no intrinsic difficulty in
extending the methodology to allow positive cohesions for
all subsets. There would be an increase in the computational
burden, but this increase would be somewhat mitigated
through Markov sampling. The methodology also can be
extended to observations made in two or higher dimensions
and thus offers solutions to many image processing problems.
In image processing we might consider allowing positive prior
cohesions for connected subsets only, for convex subsets only,
or indeed for any family of subsets with the cohesions chosen
to encourage desirable properties such as connectivity. We
intend to explore this idea further in a forthcoming article.

In an earlier article (Barry and Hartigan 1990), we de-
scribed how product partition models can be applied to
problems involving changing regression regions. The ideas
of this article can easily be extended to such problems. The
methodology can also be applied when the data are not nor-
mally distributed and/or are not independent given the pa-
rameter values. The computational difficulty will depend on
the complexity of the posterior distributions that arise. When
applying Markov sampling, it is good to integrate the pos-
terior probabilities of partitions over as many of the unknown
parameters as possible before sampling partitions. This re-
duces the correlation between the simulated posterior means
given the sampled partition in successive passes, so that fewer
passes are required to get satisfactory approximations for the
posterior means. With the aid of Markov sampling, we expect
product partition models to be useful in problems in which
there is uncertainty concerning the range of application of
a particular probability model.

[Received October 1990. Revised March 1992.]
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