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Abstract: - The Discrete Wavelet Transform (DWT) is a transformation that can be used to analyze the
temporal and spectral properties of non-stationary signals like audio. In this paper we describe some
applications of the DWT to the problem of extracting information from non-speed audio. More speaficaly
automatic dassification of various types of audio using the DWT is described and compared with ather
traditional feature extractors propaosed in the literature. In addition, a technique for detecting the beat attributes
of music is presented. Both synthetic and real world stimuli were used to evaluate the performance of the best

detection agorithm.
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1 Introduction

Digital audio is becoming a major part of the
average omputer user experience The increasing
amourts of avalable audio data require the
development of new techniques and algorithms for
structuring this information. Although there has
been alot of research on the problem of information
extraction from speed signals, work on nonspeed
audio like music has only appeared recently.

The Wavelet Transform (WT) and more
particularly the Discrete Wavelet Transform (DWT)
is a relatively recent and computationaly efficient
technique for extracting information about non-
stationary signals like audio. This paper explores the
use of the DWT in two applications. The first
application is the auttomatic dassification d non
speech audio data using dtatigica pattern
reagnition with feature vectors derived from the
wavelet analysis. The second application is the
extraction of beat attributes from music signals.

The paper is organized as follows: Sedion 2
describes related work. An overview of the DWT is
given in Sedion 3. Section 4 describes the DWT-
based feature extraction and compares it with
standard feature front ends that have been used in
the past. Results from automatic dassification o
three data @llections are provided. Beat detection
using the DWT is described in Section 5. The results
of the beat detedion are evaluated using synthetic
and red world stimuli. Implementation information
is provided in sedion 6. Some directions for future
research are given in Section 6

2 Reated Work

A general overview of audio information retrieval
for speech and other types of audioisgivenin[1]. A
robust classifier for Music vs Speedh is described in
[2] and [3] describes a system for content-based
retrieval of short isolated sounds. Automatic beat
extraction and tempo anaysis is explored in [4].
Introductions to wavelets can be foundin [5,6].
Wavelets for audio and especially music have been
explored by [7]. The most relevant work to our
research are the two systems for content-based
indexing and retrieval based on wavelets that are
described in [8,9]. In bah cases Query-by-Example
(QBE) similarity retrieval is studied.

3 TheDiscrete Wavelet Transform
The Wavelet Transform (WT) is a technique for
analyzing signals. It was developed as an alternative
to the short time Fourier Transform (STFT) to
overcome problems related to its frequency and time
resolution properties. More specifically, urlike the
STFT that provides uniform time resolution for all
frequencies the DWT provides high time resolution
and low frequency resolution for high frequencies
and Hgh frequency resolution and low time
resolution for low frequencies. In that respect it is
similar to the human ea which exhibits similar
time-frequency resol ution characteristics.

The Discrete Wavelet Transform (DWT) is a
specia case of the WT that provides a cmmpad
representation d a signal in time and frequency that
can be coomputed efficiently.



The DWT is defined by the foll owing equetion:

W(j.k) = ZZX(k)Z_j’Zw(Z_jn-k) @

where (/(t) isatime functionwith finite energy and

fast decay cdled the mother wavelet. The DWT
analysis can be performed using a fast, pyramidal
algorithm related to multirate filterbanks [ 10].

Asamultirate filterbank the DWT can be viewed
as a congtant Q filterbank with octave spacing
between the centers of the filters. Each subband
corntains half the samples of the neighbaing higher
frequency subband. In the pyramidal algorithm the
signal is analyzed at different frequency bands with
different resolution by decompasing the signal into a
coarse gproximation and cetail information. The
coarse gproximation is then further decomposed
using the same wavelet decompaosition step. This is
achieved by successive highpass and lowpass
filtering of the time domain signal and is defined by
the following equations:

Y[kl = 3 Anlgl2k-n] @

VoK1 = 3 {rib2k-n] @

where y...[K], You[K] are the outputs of the

highpass (g) and lowpass (h) filters, respectively
after subsampling by 2. Because of the
downsampling the number of resulting wavelet
coefficients is exactly the same & the number of
input points. A variety of different wavelet families
have been proposed in the literature. In ouw
implementation, the 4 coefficient wavelet family
(DAUBA4) proposed by Daubedchies[11] is used.

4 Feature Extraction & Classification

The etracted wavelet coefficients provide a
compad representation that shows the energy
digtribution d the signal in time and frequency. In
order to further reduce the dimensionality of the
extracted feature vedors, statistics over the set of the
wavelet coefficients are used. That way the
statistical characteristics of the “texture’” or the
“music surface” of the piece can be represented. For
example the distribution of energy in time ad
frequency for music is different from that of speech.

The following features are used in aur system:

e The mean o the &solute value of the
coefficients in ead subband. These features
provide information about the frequency
digtribution d the audio signal.

e The standard deviation of the aefficients in
eady subband. These features provide
information about the anournt of change of the
frequency distribution

» Ratios of the mean values between adjacent
subbands. These features aso provide
information about the frequency distribution.

A window size of 65536 samples at 22060 Hz
sampling rate with hopsize of 512 seconds is used
as input to the feature extradion. This correspornds
to approximately 3 seconds. Twelve levels
(subbands) of coefficients are used resulting in a
feature vedor with 45dimensions (12 + 12+ 11).

To evaluate the etracted features they were
compared in three dassification experiments with
two feature sets that have been proposed in the
literature. The first feature set consists of features
extracted using the STFT [3]. The secondfeature set
consists of features extracted from Mel-Frequency
Cepstral  Coefficients (MFCC) [12] which are
perceptually motivated features that have been used
in speed recognition research.

The following three dasdfication experiments
were conducted:
e MusicSpeech (Music, Speech)

126files
* Voices(Male, Female, Sports Announcing)

60files
e Classical (Choir, Orchestra, Piano, String

Quartet)

320files
where eadh file is 30 seconds long. Figure 1
summarizes the dassification results. The evaluation
was performed using a 10-fold paradigm where a
random 10% of the adio files where to test a
classifier trained on the remaining 90%. This
randam partition process was repeated 100 times
and the results were averaged. Feature vedors
extracted from the same audio file where never split
into testing and training datasets to avoid false high
acaracy. A Gaussian classifier was trained using
the threefeature sets (DWTC, MFCC, STFTC). The
results of figure 3 show much better results than
randam clasdfication are adieved in al cases and
that the performance of the DWTC feature set is
comparable to the other two feature sets.



5 Beat detection

Bea detection is the aitomatic extradion o
rhythmic pulse from music signals. In this section
we describe an algorithm based onthe DWT that is
cgpable of automatically extracting beat information
from rea world musica signals with arbitrary
timbral and polyphoric complexity. The work in [6]
shows that it is possible to construct an automatic
bea detection algorithm with these capabilities.

The beat detedion algorithm is based on detecting
the most salient periodicities of the signal. Figure 3
shows a flow diagram of the beat detedion
algorithm. The signal is first decompaosed into a
number of octave frequency bands using the DWT.
After that the time domain amplitude envelope of
ead band is extracted separately. This is achieved
by low passfiltering ead band, applying full wave
rectification and davnsampling. The ewelopes of
eathh band are then summed together and an
autocorrelation function is computed. The peaks of
the autocorrelation function correspond to the
various periodicities of the signal’s envelope. More
specificaly the following stages are performed:

1. LPF
Low pass filtering of the signal with a One Pole
filter with alpha value 0.99 given by the equation:

yinl =@-a){n]-ayin]  (3)

2. FWR

Full wave rectification given by the equation:
yln] = abs(xn]) 4

3. DOWNSAMPLING
yin] = xkn] ©)

4. NORM

Normali zation in eat band (mean removal) :

yin] = x{n] - E[X{n]] (6)

5. ACRL

Autocorrelation given by the eguation:

K] =%zx[n]x[m K @

The first five pe&s of the aitocorrelation function
are detected and their correspording periodicities in
beds per minute (bpm) are calculated and added in a
histogram. This process is repeated by iterating over
the signal. The periodicity corresponding to the most
prominent pe&k of the final histogram is the
estimated tempo in bpm of the audio file. A block
diagram of this processis dxown in figure 2.

A number of synthetic beat patterns were
constructed to evaluate the bea detection algorithm.
Bassdrum, snare, hi-hat and cymbal sounds were
used, with addition d woodblock and three tom-tom
sounds for the unison examples. The smple unison
beas versus cascaded beats of differing sounds are
used to chedk for phase sensitivity in the agorithm.
Simple and complex beat patterns are used to gauge
the possibility to find the dominant beat timing. For
this purpose, the simple bed pattern in the diagram
above has been synthesized at 5 dfferent spedls.
The simple rhythm pattern has a simple rhythmic
substructure with single-bed regularity in the single
instrument sedions, whereas the complex pattern
shows a amplex rhythmic substructure across and
within the single instrument sedions. Figure 3
shows the synthetic bed patterns that were used for
evaluation in tablature notation. In all cases the
algorithm was able to deted the basic beat of the
pattern.

In addtion to the synthetic beat patterns the
algorithm was applied to rea world music signals.
To evauate the agorithm's performance it was
compared to the bpm detected manually by tapping
the mouse with the music. The aerage time
difference between the taps was used as the manual
bea estimate. Twenty files containing a variety of
music styles were used to evaluate the algorithm (5
HipHop, 3 Rock, 6 Jazz, 1 Blues, 3 Classical, 2
Ethnic). For most of the files the prominent beat was
detected clearly (13/20) (i.e the beat corresporded to
the highest pe&k of the histogram). For (5/20) files
the bea was detected as a histogram pedk but it was
not the highest, and for (2200 no peak
corresponding to the beat was found. In the pieces
that the beat was not detected there was no daminant
periodicity (these pieces were ether classical music
or jazz). In such cases humans rely on more high-
level information like groupng, melody and
harmonic progression to perceive the primary bed
from the interplay of multiple periodicities. Figure 4
shows the histograms of two classicd music pieces
and two modern pop music pieces. The prominent
pe&ks correspond to the detected periodicities.



6 Implementation

The agorithms described have been implemented
and evaluated using MARSYAS [13] a free software
framework for rapid development of computer
audition applicdions written in C++. Both
algorithms (feature extraction-clasdfication, beat
detection) can be performed in rea-time using this
framework. MARSYAS can be downloaded from:
http://www.cs.princeton.edu/mar syas.html

7 Futurework
The exact details of feaure cdculation for the STFT
and MFCC have been explored extensively in the
literature. On the other hand, wavelet based features
have @peared relatively recently. Further
improvements in classification accuracy can be
expected with more careful experimentation with the
exact details of the parameters. We dso plan to
investigate the use of other wavelet families.
Anather interesting direction is combining features
from different anaysis tedniques to improve
classification accuracy. A general methodology for
audio segmentation based on “texture” without
attempting classificaion is described in [14]. We
plan to apply this methodology using the DWT.
From inspecting the bea histograms it is clear
that more information than just the primary bed is
contained (see Figure 4). For example it is easy to
separate visudly classica music from modern
popdar music based on their beat histograms.
Modern popular music has more pronourced peaks
corresponding to its strong rhythmic characteristics.
We plan to use the beat histograms to extrad genre
related information. A comparison of the bea
detection algorithm described in [4] with ou scheme
on the same dataset is aso planned for the future. In
addition, more creful studies using the synthetic
examples are planned for the future. These studies
will show if it is possible to detect the phase and
periodicity of multiple lines using the DWT.
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Figure 1: Comparison of classificaion methods on various data-sets.
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Figure 2: Block-diagram of bea-detedion algorithm based on the Discrete Wavelet Transform (DWT).
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Figure 3: Synthetic bea patterns (CY = cymbal, HH = hi-hat, SD = snare drum, BD = Base Drum, WB
=wood bock, HT/MT/LT = tom-toms)
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Figure 4: Bed histograms for classcal (Ieft) and contemporary popular music (right).




