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Abstract: - The Discrete Wavelet Transform (DWT) is a transformation that can be used to analyze the
temporal and spectral properties of non-stationary signals li ke audio. In this paper we describe some
applications of the DWT to the problem of extracting information from non-speech audio.  More specifically
automatic classification of various types of audio using the DWT is described and compared with other
traditional feature extractors proposed in the literature. In addition, a technique for detecting the beat attributes
of music is presented. Both synthetic and real world stimuli were used to evaluate the performance of the beat
detection algorithm.
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1 Introduction
Digital audio is becoming a major part of the
average computer user experience. The increasing
amounts of available audio data require the
development of new techniques and algorithms for
structuring this information. Although there has
been a lot of research on the problem of information
extraction from speech signals, work on non-speech
audio li ke music has only appeared recently.
    The Wavelet Transform (WT) and more
particularly the Discrete Wavelet Transform (DWT)
is a relatively recent and computationally efficient
technique for extracting information about non-
stationary signals li ke audio. This paper explores the
use of the DWT in two applications. The first
application is the automatic classification of non-
speech audio data using statistical pattern
recognition with feature vectors derived from the
wavelet analysis. The second application is the
extraction of beat attributes from music signals.
    The paper is organized as follows: Section 2
describes related work. An overview of the DWT is
given in Section 3. Section 4 describes the DWT-
based feature extraction and compares it with
standard feature front ends that have been used in
the past. Results from automatic classification of
three data collections are provided. Beat detection
using the DWT is described in Section 5. The results
of the beat detection are evaluated using synthetic
and real world stimuli . Implementation information
is provided in section 6. Some directions for future
research are given in Section 6.

2 Related Work
A general overview of audio information retrieval
for speech and other types of audio is given in [1]. A
robust classifier for Music vs Speech is described in
[2] and [3] describes a system for content-based
retrieval of short isolated sounds. Automatic beat
extraction and tempo analysis is explored in [4].
Introductions to wavelets can be found in [5,6].
Wavelets for audio and especially music have been
explored by [7]. The most relevant work to our
research are the two systems for content-based
indexing and retrieval based on wavelets that are
described in [8,9]. In both cases Query-by-Example
(QBE) similarity retrieval is studied.

3   The Discrete Wavelet Transform
The Wavelet Transform (WT) is a technique for
analyzing signals. It was developed as an alternative
to the short time Fourier Transform (STFT) to
overcome problems related to its frequency and time
resolution properties. More specifically, unlike the
STFT that provides uniform time resolution for all
frequencies the DWT provides high time resolution
and low frequency resolution for high frequencies
and high frequency resolution and low time
resolution for low frequencies. In that respect it is
similar to the human ear which exhibits similar
time-frequency resolution characteristics.
      The Discrete Wavelet Transform  (DWT) is a
special case of the WT that provides a compact
representation of a signal in time and frequency that
can be computed efficiently.



The DWT is defined by the following equation:

)2(2)(),( 2/ knkxkjW j

j k

j −= −−∑∑ ψ         (1)

where )(tψ  is a time function with finite energy and
fast decay called the mother wavelet. The DWT
analysis can be performed using a fast, pyramidal
algorithm related to multirate filterbanks [10].
     As a multirate filterbank the DWT can be viewed
as a constant Q filterbank with octave spacing
between the centers of the filters. Each subband
contains half the samples of the neighboring higher
frequency subband. In the pyramidal algorithm the
signal is analyzed at different frequency bands with
different resolution by decomposing the signal into a
coarse approximation and detail information. The
coarse approximation is then further decomposed
using the same wavelet decomposition step. This is
achieved by successive highpass and lowpass
filtering of the time domain signal and is defined by
the following equations:
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where ][],[ kyky lowhigh  are the outputs of the

highpass (g) and lowpass (h) filters, respectively
after subsampling by 2. Because of the
downsampling the number of resulting wavelet
coefficients is exactly the same as the number of
input points. A variety of different wavelet famil ies
have been proposed in the literature. In our
implementation, the 4 coefficient wavelet family
(DAUB4) proposed by Daubechies [11] is used.

4   Feature Extraction & Classification
    The extracted wavelet coefficients provide a
compact representation that shows the energy
distribution of the signal in time and frequency. In
order to further reduce the dimensionality of the
extracted feature vectors, statistics over the set of the
wavelet coefficients are used. That way the
statistical characteristics of the “texture” or the
“music surface” of the piece can be represented. For
example the distribution of energy in time and
frequency for music is  different from that of speech.

The following features are used in our system:
• The mean of the absolute value of the

coefficients in each subband. These features
provide information about the frequency
distribution of the audio signal.

• The standard deviation of the coefficients in
each subband. These features provide
information about the amount of change of the
frequency distribution

• Ratios of the mean values between adjacent
subbands. These features also provide
information about the frequency distribution.

    A window size of 65536 samples at 22050 Hz
sampling rate with hop size of 512 seconds is used
as input to the feature extraction. This corresponds
to approximately 3 seconds. Twelve levels
(subbands) of coefficients are used resulting in a
feature vector with 45 dimensions (12 + 12 + 11).
     To evaluate the extracted features they were
compared in three classification experiments with
two feature sets that have been proposed in the
literature. The first feature set consists of features
extracted using the STFT [3]. The second feature set
consists of features extracted from Mel-Frequency
Cepstral Coefficients (MFCC) [12] which are
perceptually motivated features that have been used
in speech recognition research.
    The following three classification experiments
were conducted:
• MusicSpeech (Music, Speech)
      126 files
• Voices (Male, Female, Sports Announcing)
      60 files
• Classical (Choir, Orchestra, Piano, String

Quartet)
      320 files
where each file is 30 seconds long. Figure 1
summarizes the classification results. The evaluation
was performed using a 10-fold paradigm where a
random 10% of the audio files where to test a
classifier trained on the remaining 90%. This
random partition process was repeated 100 times
and the results were averaged. Feature vectors
extracted from the same audio file where never split
into testing and training datasets to avoid false high
accuracy. A Gaussian classifier was trained using
the three feature sets (DWTC, MFCC, STFTC). The
results of f igure 3 show much better results than
random classification are achieved in all cases and
that the performance of the DWTC feature set is
comparable to the other two feature sets.



5   Beat detection
Beat detection is the automatic extraction of
rhythmic pulse from music signals. In this section
we describe an algorithm based on the DWT that is
capable of automatically extracting beat information
from real world musical signals with arbitrary
timbral and polyphonic complexity. The work in [6]
shows that it is possible to construct an automatic
beat detection algorithm with these capabilities.

    The beat detection algorithm is based on detecting
the most salient periodicities of the signal. Figure 3
shows a flow diagram of the beat detection
algorithm. The signal is first decomposed into a
number of octave frequency bands using the DWT.
After that the time domain ampli tude envelope of
each band is extracted separately. This is achieved
by low pass filtering each band, applying full wave
rectification and downsampling. The envelopes of
each band are then summed together and an
autocorrelation function is computed. The peaks of
the autocorrelation function correspond to the
various periodicities of the signal’s envelope. More
specifically the following stages are performed:

1. LPF
Low pass filtering of the signal with a One Pole
filter with alpha value 0.99 given by the equation:
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2. FWR
Full wave rectification given by the equation:
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3. DOWNSAMPLING
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4. NORM
Normalization in each band (mean removal) :
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5. ACRL
 Autocorrelation given by the equation:
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 The first five peaks of the autocorrelation function
are detected and their corresponding periodicities in
beats per minute (bpm) are calculated and added in a
histogram. This process is repeated by iterating over
the signal. The periodicity corresponding to the most
prominent peak of the final histogram is the
estimated tempo in bpm of the audio file. A block
diagram of this process is shown in figure 2.
      A number of synthetic beat patterns were
constructed to evaluate the beat detection algorithm.
Bass-drum, snare, hi-hat and cymbal sounds were
used, with addition of woodblock and three tom-tom
sounds for the unison examples. The simple unison
beats versus cascaded beats of differing sounds are
used to check for phase sensitivity in the algorithm.
Simple and complex beat  patterns are used to gauge
the possibility to find the dominant beat timing. For
this purpose, the simple beat pattern in the diagram
above has been synthesized at 5 different speeds.
The simple rhythm pattern has a simple rhythmic
substructure with single-beat regularity in the single
instrument sections, whereas the complex pattern
shows a complex rhythmic substructure across and
within the single instrument sections. Figure 3
shows the synthetic beat patterns that were used for
evaluation in tablature notation. In all cases the
algorithm was able to detect the basic beat of the
pattern.

In addition to the synthetic beat patterns the
algorithm was applied to real world music signals.
To evaluate the algorithm’s performance it was
compared to the bpm detected manually by tapping
the mouse with the music. The average time
difference between the taps was used as the manual
beat estimate. Twenty files containing a variety of
music styles were used to evaluate the algorithm (5
HipHop, 3 Rock, 6 Jazz, 1 Blues, 3 Classical, 2
Ethnic). For most of the files the prominent beat was
detected clearly (13/20) (i.e the beat corresponded to
the highest peak of the histogram). For (5/20) files
the beat was detected as a histogram peak but it was
not the highest, and for (2/20) no peak
corresponding to the beat was found. In the pieces
that the beat was not detected there was no dominant
periodicity (these pieces were either classical music
or jazz). In such cases humans rely on more high-
level information li ke grouping, melody and
harmonic progression to perceive the primary beat
from the interplay of multiple periodicities. Figure 4
shows the histograms of two classical music pieces
and two modern pop music pieces. The prominent
peaks correspond  to the detected periodicities.



6 Implementation
The algorithms described have been implemented
and evaluated using MARSYAS [13] a free software
framework for rapid development of computer
audition applications written in C++. Both
algorithms (feature extraction-classification, beat
detection) can be performed in real-time using this
framework. MARSYAS  can be downloaded from:
http://www.cs.princeton.edu/marsyas.html

7 Future work
The exact details of feature calculation for the STFT
and MFCC have been explored extensively in the
literature. On the other hand, wavelet based features
have appeared relatively recently. Further
improvements in classification accuracy can be
expected with more careful experimentation with the
exact details of the parameters. We also plan to
investigate the use of other wavelet famil ies.
Another interesting direction is combining features
from different analysis techniques to improve
classification accuracy. A general methodology for
audio segmentation based on “ texture” without
attempting classification is described in [14]. We
plan to apply this methodology using the DWT.
    From inspecting the beat histograms it is clear
that more information than just the primary beat is
contained (see Figure 4). For example it is easy to
separate visually classical music from modern
popular music based on their beat histograms.
Modern popular music has more pronounced peaks
corresponding to its strong rhythmic characteristics.
We plan to use the beat histograms to extract genre
related information. A comparison of the beat
detection algorithm described in [4] with our scheme
on the same dataset is also planned for the future. In
addition, more careful studies using the synthetic
examples are planned for the future. These studies
will show if it is possible to detect the phase and
periodicity of multiple lines using the DWT.
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Figure 1: Comparison of classification methods on various data-sets.

Figure 2: Block-diagram of beat-detection algorithm based on the Discrete Wavelet Transform (DWT).
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Figure 3: Synthetic beat patterns (CY = cymbal, HH = hi-hat, SD = snare drum, BD = Base Drum, WB
= wood block, HT/MT/LT = tom-toms)
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Figure 4: Beat histograms for classical (left) and contemporary popular music (right).
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