APPENDIX C

Example of computation in R and Bugs

We illustrate some of the practical issues of simulation by fitting a single
example—the hierarchical normal model for the eight educational testing ex-
periments described in Section 5.5. After some background in Section C.1,
we show in Section C.2 how to fit the model using the Bayesian inference
package Bugs, operating from within the general statistical package R. We
proceed from data input, through statistical inference, to posterior predictive
simulation and graphics. Section C.3 describes some alternative ways of pa-
rameterizing the model in Bugs. Section C.4 presents several different ways of
programming the model directly in R. These algorithms require programming
efforts that are unnecessary for the Bugs user but are useful knowledge for
programming more advanced models for which Bugs might not work. We con-
clude in Section C.5 with some comments on practical issues of programming
and debugging. It may also be helpful to read the computational tips at the
end of Section 10.3.

C.1 Getting started with R and Bugs

Follow the instructions at www.stat.columbia.edu/~gelman/bugsR/ to in-
stall the latest versions of R and Bugs (both of which are free of charge at the
time of the writing of this book), as well as to configure the two programs
appropriately and set up a working directory for R. Also download the func-
tions at that website for running Bugs from R and postprocessing regression
output. Once you have followed the instructions, your working directory will
automatically be set every time you run R, and the functions for running Bugs
will be automatically be loaded. You can call Bugs within R as illustrated in
the example on the webpage.

R (the open-source version of S and S-Plus) is a general-purpose statistical
package that is fully programmable and also has available a large range of
statistical tools, including flexible graphics, simulation from probability dis-
tributions, numerical optimization, and automatic fitting of many standard
probability models including linear regression and generalized linear mod-
els. For Bayesian computation, one can directly program Gibbs sampler and
Metropolis algorithms, as we illustrate in Section C.4. Computationally inten-
sive tasks can be programmed in Fortran or C and linked from R.

Bugs is a high-level language in which the user specifies a model and starting
values, and then a Markov chain simulation is automatically implemented for
the resulting posterior distribution. It is possible to set up models and run

This
chapter
comes from
Bayesian
Data
Analysis,
second
edition, by
Andrew
Gelman,
John B.
Carlin, Hal
S. Stern,
and Donald
B. Rubin.
Copyright
(© 2003
CRC Press.
See
http://
www.stat.
columbia.edu/
~gelman/
for more
information.

592 EXAMPLE OF COMPUTATION IN R AND BUGS

them entirely within Bugs, but in practice it is almost always necessary to
process data before entering them into a model, and to process the inferences
after the model is fitted, and so we run Bugs by calling it from R, using the
bugs () function in R, as we illustrate in Section C.2. As of the writing of this
book, the current version of Bugs is called WinBUGS and must be run in the
environment of the Microsoft Windows operating system. When we mention
the Bugs package, we are referring to the latest version of WinBUGS.

R and Bugs have online help, and further information is available at the
webpages www.r-project.org and www.mrc-bsu.cam.ac.uk/bugs/. We an-
ticipate continuing improvements in both packages in the years after this book
is released (and we will update our webpage accordingly), but the general com-
putational strategies presented here should remain relevant.

When working in Bugs and R, it is helpful to set up the computer to si-
multaneously display three windows: an R console and graphics window, and
text editors with the Bugs model file and the R script. Rather than typing
commands directly into R, we prefer to enter them into the text editor and
then use cut-and-paste to transfer them to the R console. Using the text editor
is convenient because it allows more flexibility in writing functions and loops.

C.2 Fitting a hierarchical model in Bugs

In this section, we describe all the steps by which we would use Bugs to fit
the hierarchical normal model to the SAT coaching data in Section 5.5. These
steps include writing the model in Bugs and using R to set up the data and
starting values, call Bugs, create predictive simulations, and graph the results.
Section C.3 gives some alternative parameterizations of the model in Bugs.

Bugs model file

The hierarchical model can be written in Bugs in the following form, which
we save in the file schools. txt in our R working directory. (The file must be
given a .txt extension.)

model {
for (j in 1:1){
y[j] = dnorm (thetaljl, tau.y[jl)
thetal[j] ~ dnorm (mu.theta, tau.theta)
tau.y[j] <- pow(sigma.y[jl, -2)
}
mu.theta ~ dnorm (0, 1.0E-6)
tau.theta <- pow(sigma.theta, -2)
sigma.theta ~ dunif (0, 1000)
}

This model specification looks similar to how it would be written in this
book, with two differences. First, in Bugs, the normal distribution is parame-
terized by its precision (1/variance), rather than its standard deviation. When

FITTING A HIERARCHICAL MODEL IN BUGS 993

working in Bugs, we use the notation 7 for precisions and o for standard de-
viations (departing from our notation in the book, where we use o and 7 for
data and prior standard deviations, respectively).

The second difference from our model in Chapter 5 is that Bugs requires
proper prior distributions. Hence, we express noninformative prior informa-
tion by proper distributions with large uncertainties: pg is given a normal
distribution with mean 0 and standard deviation 1000, and oy has a uniform
distribution from 0 to 1000. These are certainly noninformative, given that
the data y all fall well below 100 in absolute value.

R script for data input, starting values, and running Bugs

We put the data into a file, schools.dat, in the R working directory, with
headers describing the data:

school estimate sd

A 28 15
B 8 10
Cc -3 16
D 7 11
E -1 9
F 1 11
G 18 10
H 12 18

From R, we then execute the following script, which reads in the dataset,
puts it in list format to be read by Bugs, sets up a function to compute initial
values for the Bugs run, and identifies parameters to be saved.

schools <- read.table ("schools.dat", header=T)

J <- nrow (schools)

y <- schools$estimate

sigma.y <- schools$sd

data <- list ("J", "y", "sigma.y")

inits <- function()

list (theta=rnorm(J,0,100), mu.theta=rnorm(1,0,100),
sigma.theta=runif(1,0,100))

parameters <- c("theta", "mu.theta", "sigma.theta")

In general, initial values can be set from crude estimates, as discussed in
Section 10.1. In this particular example, we use the range of the data to con-
struct roughly overdispersed distributions for the 6;’s, 19, and oy. Bugs does
not require all parameters to be initialized, but it is a good idea to do so. We
prefer to explicitly construct the starting points randomly as above, but it
would also be possible to start the simulations with simple initial values; for
example,

initsl <- list (theta=y, mu.theta=0, sigma.theta=1)

inits2 <- list (theta=y, mu.theta=0, sigma.theta=10)

inits3 <- list (theta=y, mu.theta=0, sigma.theta=100)

inits <- list (initsl, inits2, inits3)

594 EXAMPLE OF COMPUTATION IN R AND BUGS

Inference for Bugs model at "c:/bugsR/schools.txt"
3 chains, each with 1000 iterations (first 500 discarded)
n.sims = 1500 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
thetal[1] 11.0 8.5 -2.1 5.4 9.9 156.2 30.5 1.0 76
thetal[2] 7.46.2 -5.0 3.7 7.111.4 20.1 0 290
theta[3] 5.6 7.8 -12.3 1.5 6.1 10.1 19.9 1.0 1400
theta[4] 7.46.6 -5.7 3.7 7.211.3 21.2 1.0 170
thetal5] 4.6 6.4 -9.6 0.5 5.4 8.8 16.0 1.0 390
thetal[6] 5.6 6.6 -8.0 1.4 6.0 10.1 18.1 1.0 430
thetal[7] 10.0 6.7 -2.1 5.6 9.4 14.0 25.0 1.0 73
thetal8] 8.07.8 -6.5 3.8 7.4 12.1 24.9 1.0 140
mu.theta 7.55.4 -2.8 4.3 7.3 10.7 19.0 1.0 160
sigma.theta 6.5 5.7 0.2 2.7 4.9 9.1 21.4 1.1 23
deviance 60.3 2.2 56.9 58.9 59.8 61.1 66.0 1.0 92
pD = 2.4 and DIC = 62.7 (using the rule, pD = var(deviance)/2)

Figure C.1 Numerical output from the bugs() function after being fitted to the hi-
erarchical model for the educational testing example. For each parameter, neg is a
rough measure of effective sample size, and R is the potential scale reduction factor
defined in Section 11.6 (at convergence, R = 1). The effective number of parameters
pp and the expected predictive error DIC are defined in Section 6.7.

80% interval for each chain R-hat medians and 80% intervals
-10-5 0 5 10 15 20 25 1 15 2+ 25 4
theta HHHH

-10- 123456738

theta

20 ~
mu.theta +

1
2
3
)
5
6
7 -5

8

mu.theta
sigma.theta

20 -
N U)) sigma.theta *
-10-5 0 5 10 15 20 25 1 1.5 2+ 0 -

65 -
deviance 4
57 4

Figure C.2 Graphical output from the bugs() function after being fitted to the hi-
erarchical model for the educational testing erxample. The left side of the display
shows the overlap of the three parallel chains, and the right side shows the posterior
inference for each parameter and the deviance (—2 times the log likelihood). The
on-screen display uses colors to distinguish the different chains.

In any case, we can now run Bugs with 3 chains for 1000 iterations:

schools.sim <- bugs (data, inits, parameters, "schools.txt",
n.chains=3, n.iter=1000)

While Bugs is running, it opens a new window and freezes R. When the
computations are finished, summaries of the inferences and convergence are
displayed as a table in the R console (see Figure C.1) and in an R graphics
window (see Figure C.2). In this example, the sequences have mixed well—the

FITTING A HIERARCHICAL MODEL IN BUGS 995

estimated potential scale reduction factors R are close to 1 for all parameters—
and so we stop. (If some of the R factors were still large, we would try running
the simulation a bit longer—perhaps 2000 or 5000 iterations per chain—and
if convergence were still a problem, we would consider reparameterizing the
model. We give some examples of reparameterizing this model in Section C.3.)
Running three chains for 1000 iterations and saving the second half of each
chain (the default option) yields 1500 simulation draws of the parameter vec-
tor.

The output in Figure C.1 also gives information on the effective sample
size meg for each parameter (as defined at the end of Section 11.6) and the
deviance and DIC (see Section 6.7).

Accessing the posterior simulations in R

The output of the R function bugs () is a list which includes several compo-
nents, most notably the summary of the inferences and convergence and a list
containing the simulation draws of all the saved parameters. In the example
above, the bugs () call is assigned to the R object schools.sim, and so typing
schools.sim$summary from the R console will display the summary shown in
Figure C.1.

The posterior simulations are saved in the list, schools.sim$sims.list. We
we can directly access them by typing attach.all(schools.sim$sims.list)
from the R console, at which point mu.theta is a vector of 1500 simulations of
1o, sigma.thetais a vector of 1500 simulations of oy, and theta is a 1500 x 8
matrix of simulations of . Other output from the bugs () function is explained
in comment lines within the function itself and can be viewed by typing bugs
from the R console or examining the file bugs.R.

Posterior predictive simulations and graphs in R

Replicated data in the existing schools. Having run Bugs to successful con-
vergence, we can work directly in R with the saved parameters, 6, ug, 9. For
example, we can simulate posterior predictive replicated data in the original
8 schools:
y.rep <- array (NA, c(n.sims, J))
for (sim in 1:n.sims)
y.replsim,] <- rnorm (J, thetalsim,], sigma.y)

We now illustrate a graphical posterior predictive check. There are not many
ways to display a set of eight numbers. One possibility is as a histogram; the
possible values of y™P are then represented by an array of histograms as in
Figure 6.2 on page 160. In R, this could be programmed as

par (mfrow=c(5,4), mar=c(4,4,2,2))

hist (y, xlab="", main="y")

for (sim in 1:19)

hist (y.rep[sim,], xlab="", main=paste("y.rep",sim))

596 EXAMPLE OF COMPUTATION IN R AND BUGS

The upper-right histogram displays the observed data, and the other 19
histograms are posterior predictive replications, which in this example look
similar to the data.

We could also compute a numerical test statistic such as the difference be-
tween the best and second-best of the 8 coaching programs:

test <- function (y){

y.sort <- rev(sort(y))

return (y.sort[1] - y.sort[2])
}
t.y <- test(y)
t.rep <- rep (NA, n.sims)
for (sim in 1:n.sims)
t.replsim] <- test(y.repl[sim,])

We then can summarize the posterior predictive check. The following R
code gives a numerical comparison of the test statistic to its replication dis-
tribution, a p-value, and a graph like those on pages 161 and 163:

cat ("T(y) =", round(t.y,1), "and T(y.rep) has mean",
round (mean(t.rep),1), "and sd", round(sd(t.rep),1),
"\nPr (T(y.rep) > T(y)) =", round(mean(t.rep>t.y),2), "\n")

hist0 <- hist (t.rep, xlim=range(t.y,t.rep), xlab="T(y.rep)")
lines (rep(t.y,2), c(0,1e6))
text (t.y, .9*max(histO$count), "T(y)", adj=0)

Replicated data in new schools. As discussed in Section 6.8, another form of
replication would simulate new parameter values and new data for eight new
schools. To simulate data y; ~ N(6;, aj2-) from new schools, it is necessary to
make some assumption or model for the data variances UJZ. For the purpose
of illustration, we assume these are repeated from the original 8 schools.
theta.rep <- array (NA, c(n.sims, J))
y.rep <- array (NA, c(n.sims, J))
for (sim in 1:n.sims){
theta.rep[sim,] <- rnorm (J, mu.thetal[sim], sigma.theta[sim])
y.replsim,] <- rnorm (J, theta.rep[sim,], sigma.y)

}

Numerical and graphical comparisons can be performed as before.

C.3 Options in the Bugs implementation

We next explore alternative ways that the model can be expressed in Bugs.

Alternative prior distributions

The model as programmed above has a uniform prior distribution on the hy-
perparameters py and og. An alternative is to parameterize in terms of 7y,
the precision parameter, for which a gamma distribution is conditionally con-
jugate in this model. For example, the last two lines of the Bugs model in
Section C.3 can be replaced by,

OPTIONS IN THE BUGS IMPLEMENTATION 597

InaSS

0 5 10 15 20 25 30 35 0 2 4 6 8 10
sigma.theta sigma.theta

Figure C.3 Histograms of posterior simulations of the between-school standard de-
viation, og, from models with two different prior distributions: (a) uniform prior
distribution on og, and (b) conjugate Gamma(l,1) prior distribution on the preci-
ston parameter 1/03. The two histograms are on different scales. Overlain on each
is the corresponding prior density function for og. (For model (b), the density for og
is calculated using the gamma density function from Appendiz A multiplied by the
Jacobian of the 1/cj transformation.) In model (b), posterior inferences are highly
constrained by the prior distribution.

tau.theta ~ dgamma (1, 1)
sigma.theta <- 1/sqrt(tau.theta)

The Gamma(1,1) prior distribution is an attempt at noninformativeness
within the conjugate family. (Recall that Bugs does not allow improper prior
distributions.)

The initial values in the call to Bugs from R must now be redefined in terms
of 7y rather than oy; for example,

inits <- function ()
list (theta=rnorm(J,0,100), mu.theta=rnorm(i,0,100),
tau.theta=runif(1,0,100))

Otherwise, we fit the model as before. This new prior distribution leads to
changed inferences. In particular, the posterior mean and median of gy are
lower and shrinkage of the 6;’s is greater than in the previously-fitted model
with a uniform prior distribution on oy. To understand this, it helps to graph
the prior distribution in the range for which the posterior distribution is sub-
stantial. Figure C.3b shows that the prior distribution is concentrated in the
range [0.5, 5], a narrow zone in which the likelihood is close to flat (we can see
this because the distribution of the posterior simulations of gy closely matches
the prior distribution, p(og)). By comparison, in Figure C.3a, the uniform prior
distribution on oy seems closer to ‘noninformative’ for this problem, in the
sense that it does not appear to be constraining the posterior inference.

Parameter expansion

A different direction to go in the Bugs programming is toward more efficient
simulation by parameterizing the model so that the Gibbs sampler runs more

598 EXAMPLE OF COMPUTATION IN R AND BUGS

effectively. Such tools are discussed in Section 11.8; here we illustrate how to
set them up in Bugs. Introducing the new multiplicative parameter «, the
model becomes

2
yi ~ Nu+ay;,o0j)
2
Vi N(Oa U*y)
p(,U, Q, U’Y) X 13 (Cl)
which we code in Bugs as follows:
model {
for (j in 1:1){
y[j] = dnorm (thetaljl, tau.y[jl)
theta[j] <- mu.theta + alpha*gammalj]
gamma[j] ~ dnorm (0, tau.gamma)
tau.y[j] <- pow(sigma.y[jl, -2)
}
mu.theta ~ dnorm (0.0, 1.0E-6)
tau.gamma <- pow(sigma.gamma, -2)
sigma.gamma ~ dunif (O, 1000)
alpha ~ dunif(0,1000)

sigma.theta <- abs(alpha)*sigma.gamma
}
The parameters of interest, 6 and oy, are defined in the Bugs model in terms
of the expanded parameter set, v, «, 19, 0. The call from R must then specify
initial values in the new parameterization; for example
inits <- function ()
list (gamma=rnorm(J,0,100), alpha=runif(1,0,100),
mu.theta=rnorm(1,0,100), sigma.gamma=runif(1,0,100))

and then the rest of the R program is unchanged.

Posterior predictive simulations

At the end of Section C.2 we illustrated the computation of posterior predic-
tive simulations in R. It is also possible to perform these simulations in Bugs.
For example, to simulate new data from the existing schools, we can add the
following line in the Bugs model, inside the ‘for (j in 1:J)’ loop (see the
model on page 592, for example):

y.rep[j] = dnorm (thetaljl, tau.y[jl)

Or, to simulate new data from new schools:
theta.rep[j] ~ dnorm (mu.theta, tau.theta)
y.rep[j]l = dnorm (theta.rep[jl, tau.y[jl)
We can also include in the Bugs model the computation of a test statistic,
for example, the difference between the two best coaching programs:
J.1 <= J-1
t.rep <- ranked(y.rep[],J) - ranked(y.rep[],J.1)

OPTIONS IN THE BUGS IMPLEMENTATION 599

We must then add these derived quantities to the list of parameters saved in R:
parameters <- c("theta", "mu.theta", "sigma.theta", "y.rep", "t.rep")

We can then call the Bugs program from R as before.

Using the t model

It is straightforward to expand the hierarchical normal distribution for the
coaching effects to a t distribution as discussed in Section 17.4. For simplicity,
we return to the original form of the model without parameter expansion.
model {
for (j in 1:21){
y[j]l ~ dnorm (thetaljl, tau.y[jl)
thetal[j] ~ dt (mu.theta, tau.theta, nu.theta)
tau.y[j] <- pow(sigma.y[jl, -2)
}
mu.theta ~ dnorm (0.0, 1.0E-6)
tau.theta <- pow(sigma.theta, -2)
sigma.theta ~ dunif (0, 1000)
nu.theta <- 1/nu.inv.theta
nu.inv.theta ~ dunif (0, .5)

}

Here, we are assigning a uniform distribution to the inverse of the shape
parameter vy, as in Section 17.4. In addition, Bugs requires the ¢ degrees of
freedom to be at least 2, so we have implemented that restriction on vy. We
run this model from R as before, adding nu.inv.theta to the set of initial
values and nu.theta to the parameters saved:

inits <- function()

list (theta=rnorm(J,0,100), mu.theta=rnorm(1,0,100),
sigma.theta=runif(1,0,100), nu.inv.theta=runif(1,0,.5))
parameters <- c("theta", "mu.theta", "sigma.theta", "nu.theta")

Alternatively, the ¢t model can be expressed as a normal model with a scaled
inverse-x? distribution for the variances, which corresponds to a gamma dis-
tributions for the precisions 74 ;:

model {

for (j in 1:21){
y[j]l ~ dnorm (thetal[jl, tau.y[jl)
thetal[j] ~ dnorm (mu.theta, tau.thetaljl)
tau.y[j] <- pow(sigma.y[jl, -2)
tau.thetal[j] ~ dgamma (a, b)

}

mu.theta ~ dnorm (0.0, 1.0E-6)

a <- nu.theta/2

b <- (nu.theta/2)*pow(sigma.theta, 2)

sigma.theta ~ dunif (0, 1000)

nu.theta <- 1/nu.inv.theta

nu.inv.theta ~ dunif (0, 1)

600 EXAMPLE OF COMPUTATION IN R AND BUGS

In this indirect parameterization, Bugs allows the parameter vy to be any
positive value, and so we can apply a U(0, 1) prior distribution to 1/vy.

It would be possible to further elaborate the model in Bugs by applying
parameter expansion to the ¢ model, but we do not consider any further ex-
tensions here.

C.4 Fitting a hierarchical model in R

In this section we demonstrate several different computational approaches for
analyzing the SAT coaching data by directly programming the computations
in R. Compared to using Bugs, computation in R requires more programming
effort but gives us direct control of the simulation algorithm, which is helpful in
settings where the Gibbs sampler or Metropolis algorithm is slow to converge.

Marginal and conditional simulation for the normal model

We begin by programming the calculations in Section 5.4. The programs pro-
vided here return to the notation of Chapter 5 (for example, 7 is the popu-
lation standard deviation of the 0’s) as this allows for easy identification of
some of the variables in the programs (for example, mu.hat and V.mu are the
quantities denoted by the corresponding symbols in (5.20)).

We assume that the dataset has been read into R as in Section C.2, with J
the number of schools, y the vector of data values, and sigma.y the vector of
standard deviations. Then the first step of our programming is to set up a grid
for 7, evaluate the marginal posterior distribution (5.21) for 7 at each grid
point, and sample 1000 draws from the grid. The grid here is n.grid=2000
points equally spread from 0 to 40. Here we use the grid as a discrete approxi-
mation to the posterior distribution of 7. We first define /i and V), of (5.20) as
functions of 7 and the data, as these quantities are needed here and in later
steps, and then compute the log density for 7.

mu.hat <- function (tau, y, sigma.y){
sum(y/(sigma.y~2 + tau"2))/sum(1/(sigma.y"2 + tau”2))
}
V.mu <- function (tau, y, sigma.y){
1/sum(1/(tau"2 + sigma.y~2))
}
n.grid <- 2000
tau.grid <- seq (.01, 40, length=n.grid)
log.p.tau <- rep (NA, n.grid)
for (i in 1:n.grid){
mu <- mu.hat (tau.grid[i], y, sigma.y)
V <- V.mu (tau.grid[i], y, sigma.y)
log.p.tauli] <- .5*log(V) -
.5xsum(log(sigma.y~2 + tau.grid[i]~2)) -
.B5xsum((y-mu) "2/ (sigma.y"2 + tau.grid[i]"2))

FITTING A HIERARCHICAL MODEL IN R 601

We compute the posterior density for 7 on the log scale and rescale it to elim-
inate the possibility of computational overflow or underflow that can occur
when multiplying many factors.

log.p.tau <- log.p.tau - max(log.p.tau)

p-tau <- exp(log.p.tau)

p.-tau <- p.tau/sum(p.tau)

n.sims <- 1000

tau <- sample (tau.grid, n.sims, replace=T, prob=p.tau)

The last step draws the simulations of 7 from the approximate discrete dis-
tribution. The remaining steps are sampling from normal conditional distri-
butions for ;1 and the §;’s as in Section 5.4. The sampled values of the eight
6;’s are collected in an array.

mu <- rep (NA, n.sims)
theta <- array (NA, c(n.sims,J))
for (i in 1:n.sims){
mu[i] <- rnorm (1, mu.hat(taul[i],y,sigma.y),
sqrt (V.mu(taulil,y,sigma.y)))
theta.mean <- (mul[il/tauli]l"2 + y/sigma.y~2)/
(1/tauli]l"2 + 1/sigma.y"2)
theta.sd <- sqrt(1/(1/tauli]l"2 + 1/sigma.y"2))
thetal[i,] <- rnorm (J, theta.mean, theta.sd)
}

We now have created 1000 draws from the joint posterior distribution of 7, i, 6.
Posterior predictive distributions are easily generated using the random num-
ber generation capabilities of R as described above in the Bugs context.

Gibbs sampler for the normal model

Another approach, actually simpler to program, is to use the Gibbs sampler.
This computational approach follows the outline of Section 11.7 with the sim-
plification that the observation variances O'JQ- are known.

theta.update <- function (){
theta.hat <- (mu/tau”2 + y/sigma.y"2)/(1/tau"2 + 1/sigma.y"2)
V.theta <- 1/(1/tau"2 + 1/sigma.y"2)
rnorm (J, theta.hat, sqrt(V.theta))
}
mu.update <- function (){
rnorm (1, mean(theta), tau/sqrt(J))
}
tau.update <- function (){
sqrt (sum((theta-mu) ~2) /rchisq(1,J-1))
}

We now generate five independent Gibbs sampling sequences of length 1000.
We initialize p and 7 with overdispersed values based on the range of the data
y and then run the Gibbs sampler, saving the output in a large array, sims,
that contains posterior simulation draws for 6, pu, 7.

602 EXAMPLE OF COMPUTATION IN R AND BUGS

n.chains <- 5
n.iter <- 1000
sims <- array (NA, c(n.iter, n.chains, J+2))
dimnames (sims) <- list (NULL, NULL,
c (paste ("theta[", 1:8, "1", sep=""), "mu", "tau"))
for (m in 1:n.chains){
mu <- rnorm (1, mean(y), sd(y))
tau <- runif (1, 0, sd(y))
for (t in 1:n.iter){
theta <- theta.update ()
mu <- mu.update ()
tau <- tau.update ()
sims[t,m,] <- c (theta, mu, tau)
}
}

We then check the mixing of the sequences using the R function monitor
that carries out the multiple-chain diagnostic described in Section 11.6. We
round to one decimal place to make the results more readable:

round (monitor (sims), 1)

The monitor function has automatically been loaded if you have followed the
instructions for setting up R at the beginning of this chapter. The function
takes as input an array of posterior simulations from multiple chains, and it
returns an estimate of the potential scale reduction R, effective sample size
nefr, and summary statistics for the posterior distribution (based on the last
half of the simulated Markov chains).

The model can also be computed using the alternative parameterizations
and prior distributions that we implemented in Bugs in Section C.3. For ex-
ample, in the parameter-expanded model (C.1), the Gibbs sampler steps can
be programmed as

gamma.update <- function (){
gamma.hat <- (alpha*(y-mu)/sigma.y~2)/(1/tau”2 + alpha”2/sigma.y"2)
V.gamma <- 1/(1/tau”2 + alpha”2/sigma.y"2)
rnorm (J, gamma.hat, sqrt(V.gamma))
}
alpha.update <- function (){
alpha.hat <- sum(gamma*(y-mu)/sigma.y"~2)/sum(gamma”2/sigma.y"2)
V.alpha <- 1/sum(gamma”2/sigma.y”~2)
rnorm (1, alpha.hat, sqrt(V.alpha))
}
mu.update <- function (){
mu.hat <- sum((y-alpha*gamma)/sigma.y"2)/sum(1/sigma.y"2)
V.mu <- 1/sum(1/sigma.y"~2)
rnorm (1, mu.hat, sqrt(V.mu))
}
tau.update <- function (){
sqrt (sum(gamma~2) /rchisq(1,J-1))
}

FITTING A HIERARCHICAL MODEL IN R 603
The Gibbs sampler can then be implemented as

sims <- array (NA, c(n.iter, n.chains, J+2))
dimnames (sims) <- list (NULL, NULL,
c (paste ("theta[", 1:8, "]1", sep=""), "mu", "tau"))
for (m in 1:n.chains){
alpha <- 1
mu <- rnorm (1, mean(y), sd(y))
tau <- runif (1, 0, sd(y))
for (t in 1:n.iter){
gamma <- gamma.update ()
alpha <- alpha.update ()
mu <- mu.update ()
tau <- tau.update ()
sims[t,m,] <- ¢ (mu+alpha*gamma, mu, abs(alpha)*tau)
}
}

round (monitor (sims), 1)

Gibbs sampling for the t model with fired degrees of freedom

As described in Chapter 17, the ¢ model can be implemented using the Gibbs
sampler using the normal/inverse-x? parameterization for the 0;’s and their
variances. Following the notation of that chapter, we take V; to be the variance
for 6; and model the V;’s as draws from an inverse-x? distribution with degrees
of freedom v and scale 7. As with the normal model, we use a uniform prior
distribution on (p, 7).

As before, we first create the separate updating functions, including a new
function to update the individual-school variances V;.

theta.update <- function (){
theta.hat <- (mu/V + y/sigma.y"2)/(1/V + 1/sigma.y"2)
V.theta <- 1/(1/V + 1/sigma.y"2)
rnorm (J, theta.hat, sqrt(V.theta))
}
mu.update <- function (){
mu.hat <- sum(theta/V)/sum(1/V)
V.mu <- 1/sum(1/V)
rnorm (1, mu.hat, sqrt(V.mu))
}
tau.update <- function (){
sqrt (rgamma (1, J*nu/2+1, (nu/2)*sum(1/V)))
}
V.update <- function (){
(nuxtau”2 + (theta-mu)~2)/rchisq(J,nu+1)
}

Initially we fix the degrees of freedom at 4 to provide a robust analysis of
the data.

604 EXAMPLE OF COMPUTATION IN R AND BUGS

sims <- array (NA, c(n.iter, n.chains, J+2))
dimnames (sims) <- list (NULL, NULL,
c (paste ("theta[", 1:8, "1", sep=""), "mu", "tau"))
nu <- 4
for (m in 1:n.chains){
mu <- rnorm (1, mean(y), sd(y))
tau <- runif (1, 0, sd(y))
V <= runif (J, 0, sd(y))"2
for (t in 1:n.iter){
theta <- theta.update ()
V <- V.update ()
mu <- mu.update ()
tau <- tau.update ()
sims[t,m,] <- c (theta, mu, tau)
}
}

round (monitor (sims), 1)

Gibbs-Metropolis sampling for the t model with unknown degrees of freedom

We can also include v, the degrees of freedom in the above analysis, as an
unknown parameter and update it conditional on all the others using the
Metropolis algorithm. We follow the discussion in Chapter 17 and use a uni-
form prior distribution on (u, 7,1/v).

The Metropolis updating function calls a function log.post to calculate
the logarithm of the conditional posterior distribution of 1/v given all of the
other parameters. (We work on the logarithmic scale to avoid computational
overflows, as mentioned in Section 10.3.) The log posterior density function
for this model has three terms—the logarithm of a normal density for the data
points y;, the logarithm of a normal density for the school effects 6;, and the
logarithm of an inverse-x? density for the variances V;. Actually, only the last
term involves v, but for generality we compute the entire log-posterior density
in the log.post function.

log.post <- function (theta, V, mu, tau, nu, y, sigma.y){
sum(dnorm(y,theta,sigma.y,log=T)) +
sum(dnorm(theta,mu,sqrt (V) ,log=T)) +
sum (.5*nuxlog(nu/2) + nuxlog(tau) -
lgamma(nu/2) - (nu/2+1)*log(V) - .5*nuxtau~2/V)
}

We introduce the function that performs the Metropolis step and then de-
scribe how to alter the R code given earlier to incorporate the Metropolis step.
The following function performs the Metropolis step for the degrees of free-
dom (recall that we work with the reciprocal of the degrees of freedom). The
jumping distribution is normal with mean at the current value and standard
deviation sigma.jump.nu (which is set as described below). We compute the
jumping probability as described on page 289, setting it to zero if the pro-

FITTING A HIERARCHICAL MODEL IN R 605

posed value of 1/v is outside the interval (0, 1] to ensure that such proposals
are rejected.

nu.update <- function (sigma.jump.nu){

nu.inv.star <- rnorm(1l, 1/nu, sigma.jump.nu)

if (nu.inv.star<=0 | nu.inv.star>1)
p.jump <- 0

else {
nu.star <- 1/nu.inv.star
log.post.old <- log.post (theta, V, mu, tau, nu, y, sigma.y)
log.post.star <- log.post (theta, V, mu, tau, nu.star,y,sigma.y)
r <- exp (log.post.star - log.post.old)
nu <- ifelse (runif(1) < r, nu.star, nu)
p.jump <- min(r,1)

}

return (nu=nu, p.jump=p.jump)

}

This updating function stores the acceptance probability p.jump.nu which is
used in adaptively setting the jumping scale sigma.jump.nu, as we discuss
when describing the Gibbs-Metropolis loop.

Given these functions, it is relatively easy to modify the R code that we
have already written for the ¢ model with fixed degrees of freedom. When
computing the Metropolis updates, we store the acceptance probabilities in
an array, p.jump.nu, to monitor the efficiency of the jumping. Theoretical
results given in Chapter 11 suggest that for a single parameter the optimal
acceptance rate—that is, the average probability of successfully jumping—is
approximately 44%. Thus we can vary sigma.jump.nu and run a pilot study
to determine an acceptable value. In this case we can settle on a value such
as sigma.jump.nu=1, which has an average jumping probability of about 0.4
for these data.

sigma.jump.nu <- 1

p.jump.nu <- array (NA, c(n.iter, n.chains))

sims <- array (NA, c(n.iter, n.chains, J+3))

dimnames (sims) <- list (NULL, NULL,

c (paste ("theta[", 1:8, "]1", sep=""), "mu", "tau", "nu"))
for (m in 1:n.chains){
mu <- rnorm (1, mean(y), sd(y))
tau <- runif (1, 0, sd(y))
V <- runif (J, 0, sd(y))"2
nu <- 1/runif(1, 0, 1)
for (t in 1:n.iter){
theta <- theta.update ()
V <- V.update ()
mu <- mu.update ()
tau <- tau.update ()
temp <- nu.update (sigma.jump.nu)
nu <- temp$nu
p.jump.nult,m] <- temp$p.jump

606 EXAMPLE OF COMPUTATION IN R AND BUGS

sims[t,m,] <- c (theta, mu, tau, nu)
}
}
print (mean (p.jump.nu))
round (monitor (sims), 1)

Parameter expansion for the t model

Finally, we can make the computations for the ¢t model more efficient by apply-
ing parameter expansion. In the expanded parameterization, the new Gibbs
sampler steps can be programmed in R as

gamma.update <- function (){
gamma.hat <- (alpha*(y-mu)/sigma.y~2)/(1/V + alpha”2/sigma.y"2)
V.gamma <- 1/(1/V + alpha”2/sigma.y"2)
rnorm (J, gamma.hat, sqrt(V.gamma))
}
alpha.update <- function (){
alpha.hat <- sum(gamma*(y-mu)/sigma.y~2)/sum(gamma~2/sigma.y"2)
V.alpha <- 1/sum(gamma”2/sigma.y”~2)
rnorm (1, alpha.hat, sqrt(V.alpha))
}
mu.update <- function (){
mu.hat <- sum((y-alpha*gamma)/sigma.y"2)/sum(1/sigma.y"2)
V.mu <- 1/sum(1/sigma.y"~2)
rnorm (1, mu.hat, sqrt(V.mu))
}
tau.update <- function (){
sqrt (rgamma (1, J*nu/2+1, (nu/2)*sum(1/V)))
}
V.update <- function (){
(nuxtau~2 + gamma“”2)/rchisq(J,nu+1)
}
nu.update <- function (sigma.jump){
nu.inv.star <- rnorm(l, 1/nu, sigma.jump)
if (nu.inv.star<=0 | nu.inv.star>1)
p.jump <- 0
else {
nu.star <- 1/nu.inv.star
log.post.old <- log.post (mutalpha*gamma, alpha”2*V, mu,
abs(alpha)*tau, nu, y, sigma.y)
log.post.star <- log.post (mut+alpha*gamma, alpha”2*V, mu,
abs(alpha)*tau, nu.star, y, sigma.y)
r <- exp (log.post.star - log.post.old)
nu <- ifelse (runif(1) < r, nu.star, nu)
p-jump <- min(r,1)
}
return (nu=nu, p.jump=p.jump)

}

FURTHER COMMENTS ON COMPUTATION 607

The posterior density can conveniently be calculated in terms of the original
parameterization, as shown in the function nu.update () above. We can then
run the Gibbs-Metropolis algorithm as before (see the program on the bottom
part of page 605 and the very top of page 606), adding an initialization step
for « just before the ‘for (t in 1:n.iter)’ loop:

alpha <- rnorm (1, 0, 1)
adding an updating step for « inside the loop,
alpha <- alpha.update ()

and replacing the last line inside the loop with simulations transformed to the
original @, u, 7 parameterization:

sims[t,m,] <- ¢ (mu+alpha*gamma, mu, abs(alpha)*tau, nu)

We must once again tune the scale of the Metropolis jumps. We started for
convenience at sigma.jump.nu= 1, and this time the average jumping prob-
ability for the Metropolis step is 17%. This is quite a bit lower than the
optimal rate of 44% for one-dimensional jumping, and so we would expect to
get a more efficient algorithm by decreasing the scale of the jumps (see Section
11.9). Reducing sigma.jump .nu to 0.5 yields an average acceptance probability
p.jump.nu of 32%, and sigma.jump.nu= 0.3 yields an average jumping prob-
ability of 46% and somewhat more efficient simulations—that is, the draws of
v from the Gibbs-Metropolis algorithm are less correlated and yield a more
accurate estimate of the posterior distribution. Decreasing sigma.jump .nu any
further would make the acceptance rate too high and reduce the efficiency of
the algorithm.

C.5 Further comments on computation

We have already given general computational tips at the end of Section 10.3:
start by computing with simple models and compare to previous inferences
when adding complexity. We also recommend getting started with smaller or
simplified datasets, but this strategy was not really relevant to the current
example with only 8 data points. Other practical issues that arise, and which
we have discussed in Part I1I, include starting values, the choice of simulation
algorithm, and methods for increasing simulation efficiency.

There are various ways in which the programs in this appendix could be
made more computationally efficient. For example, in the Metropolis updating
function nu.update for the ¢ degrees of freedom in Section C.4, the log pos-
terior density can be saved so that it does not need to be calculated twice at
each step. It would also probably be good to use a more structured program-
ming style in our R code (for example, in our updating functions mu.update (),
tau.update (), and so forth) and perhaps to store the parameters and data as
lists and pass them directly to the functions. We expect that there are many
other ways in which our programs could be improved. Our general approach is
to start with transparent (and possibly inefficient) code and then reprogram
more efficiently once we know it is working.

608 EXAMPLE OF COMPUTATION IN R AND BUGS

We made several mistakes in the process of implementing the computations
described in this appendix. Simplest were syntax errors in Bugs and related
problems such as feeding in the wrong inputs when calling the bugs () function
from R. We discovered and fixed these problems by using the debug option in
bugs (); for example,

schools.sim <- bugs (data, inits, parameters, "schools.txt",
n.chains=3, n.iter=10, debug=T)

and then inspecting the log file within the Bugs window.

We fixed syntax errors and other minor problems in the R code by cutting
and pasting to run the scripts one line at a time, and by inserting print
statements inside the R functions to display intermediate values.

We debugged the Bugs and R programs in this appendix by comparing
them against each other, and by comparing each model to previously-fitted
simpler models. We found many errors, including treating variances as stan-
dard deviations (for example, the command rnorm(1,alpha.hat,V.alpha)
instead of rnorm(1,alpha.hat,sqrt(V.alpha)) when simulating from a nor-
mal distribution in R), confusion between v and 1/v, forgetting a term in the
log-posterior density, miscalculating the Metropolis updating condition, and
saving the wrong output in the sims array in the Gibbs sampling loop.

More serious conceptual errors included the poor choice of conjugate prior
distribution for 7y in the Bugs model at the beginning of Section C.3, which we
realized was a problem by comparing to the posterior simulations as shown
in Figure C.3b. We also originally had an error in the programming of the
reparameterized model (C.1), both in R and Bugs (we included the parameter
 in the model for ; rather than for y;). We discovered this mistake because
the inferences differed dramatically from the simpler parameterization.

As the examples in this appendix illustrate, Bayesian computation is not
always easy, even for relatively simple models. However, once a model has
been debugged, it can be applied and then generalized to work for a range
of problems. Ultimately, we find Bayesian simulation to be a flexible tool
for fitting realistic models to simple and complex data structures, and the
steps required for debugging are often parallel to the steps required to build
confidence in a model. We can use R to graphically display posterior inferences
and predictive checks.

C.6 Bibliographic note

R is available at R Project (2002), and its parent software package S is de-
scribed by Becker, Chambers, and Wilks (1988). Two statistics texts that use
R extensively are Fox (2002) and Venables and Ripley (2002). Information
about Bugs appears at Spiegelhalter et al. (1994, 2003), and many examples
appear in the textbooks of Congdon (2001, 2003). R and Bugs have online
documentation, and their websites have pointers to various help files and ex-
amples. Several efforts are currently underway to develop Bayesian inference

BIBLIOGRAPHIC NOTE 609

tools using R, for example Martin and Quinn (2002b), Plummer (2003), and
Warnes (2003).

