| predict.plot {mining} | R Documentation |
Makes a matrix of pairwise scatterplots with lowess-type trend lines.
predict.plot(...)
predict.plot.formula(formula,data=parent.frame(),...)
predict.plot.data.frame(x,layout=NULL,partial=NULL,
rtype=c("prob","logit","probit"),
highlight,se=T,
identify.pred=F,
mcol=0,mlwd=2,
scol="red",slwd=2,
span=2/3,degree=2,family="symmetric",
mar=NA,bg=par("bg"),
xaxt=par("xaxt"),yaxt=par("yaxt"),
col=1,asp=NULL,
given=NULL,given.lab=NULL,nlevels=2,
pretty=T,key=!is.null(given),
color.palette=default.colors,
pch.palette=default.pch,
main=NULL,xlab,ylab,...)
formula |
a formula specifying the response and predictor variables |
data,x |
a data frame with at least two columns |
partial |
a model from which to compute partial residuals (used
by predict.plot.lm). |
mcol,mlwd |
If plotting partial residuals of an lm,
the color and width of the model predictions. |
layout |
a vector c(rows,cols) specifying the desired
layout of panels. Otherwise chosen automatically based on the size
of the plotting window. |
highlight |
a logical vector specifying which predictors to highlight. |
se |
If TRUE, show standard errors in linecharts. |
scol,slwd |
color and width of trend lines. |
span,degree,family |
parameters for the trend line (see loess). |
rtype |
how a factor response should be handled when drawing a trend line. |
identify.pred |
A character vector of predictor names for which
to interactively identify points. If TRUE,
done for all predictors. |
mar |
margins within each panel |
xaxt,yaxt |
arguments to par |
col |
plotting color for symbols |
asp |
Aspect ratio for each panel. If "auto", the aspect
ratio is chosen automatically based on the trend line and
auto.aspect. |
given,given.lab,nlevels,pretty,key,bg,color.palette,pch.palette |
used for conditioning plots. |
main,xlab,ylab |
axis labels. |
... |
extra arguments passed to predict.plot.data.frame or
plot. |
If the predictor is numeric, makes a scatterplot with loess line on top.
If the predictor is a factor, makes a linechart.
Tom Minka
data(Cars) predict.plot(Price~.,CarsT) fit = lm(Price~.,CarsT) predict.plot(Price~.,CarsT,partial=fit) # same thing using predict.plot.lm predict.plot(fit,partial=T)