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CHAPTER 21

REGRESSION AND LINEAR MODELS

Fitting a theoretical curve to a set of data points is one of the most common statistical problems
faced by scientists, engineers, and economists. This field is very large, because there is no one
solution that applies to all cases. Instead, we have a number of quite different problems, depending
on just what prior information we had about the phenomenon being observed, the measurement
errors, and the unknown parameters.

At the end of Chapter 8 we noted briefly some problems that orthodox theory encounters here
because of the difficulty in distinguishing between “random” and “nonrandom” quantities. Another
difficulty is even more troublesome in practice.

Unwanted Parameters

That differences in the prior information can generate qualitatively different mathematical problems
has, of course, been well recognized in the voluminous orthodox literature. Some ‘sharp and drastic’
differences can be expressed adequately by different choices of a model (for example the judgment
that a certain parameter should or should not be present at all). But some more ‘gentle’ differences
in the prior information can be expressed precisely only by differences in the corresponding prior
probabilities within a model. Orthodox theory, which does not admit the existence of the needed
prior probabilities, is helpless to take such information into account, although it may be fully as
cogent as the data.

This is not merely a philosophical problem; it leads to a serious technical problem, of “nuisance
parameters,” i.e., parameters which are physically present in the phenomenon and so cannot be
safely disregarded in the model, although we are not interested in estimating them. But once in
the model they cannot be eliminated by orthodox principles, and one is obliged to estimate them
along with the interesting parameters.

In Bayesian methods, nuisance parameters cause very little trouble – any uninteresting param-
eters are removed by integratiing out with respect to their prior probabilities. But this gives rise to
another technical question whose answer will be important for future extensions of Bayesian theory
to more and more complex problems. When parameters are integrated out, what effect does this
have on the accuracy of our estimates of the remaining ones?

In many cases, the presence of an unwanted and unknown parameter that has to be integrated
out, will cause a deterioration of our ability to estimate another parameter. Thus, consider esti-
mation of the mean µ of a normal distribution form the sample data D ≡ {x1, x2, . . . , xn}. If σ2

is known, the posterior distribution p(du|σ,D) is still a normal distribution, leading to the 90%
interval estimate (i.e., the shortest interval that contains 90% of the posterior probability):

(µ)est = x̄± 1.645
σ√
n

.

But if σ is completely unknown and must be integrated out with respect to a Jeffrey’s prior
dσ/σ, we are, in effect, estimating σ2 by the sample variance s2 = x2 − x̄2. But this estimate
is uncertain, and the integration over σ averages the normal distribution p(dµ|σ,D) over this
uncertainty. It then becomes a t-distribution, with density function ∝ [s2 + (µ− x̄)2]−n/2; and the
90% interval estimate becomes
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(µ)est = x̄± tn
s√

n− 1

where tn is the upper critical value of the t-statistic at the 95% level for f = (n − 1) degrees
of freedom. From the t-tables we find that {t2, t3, t4, t10} = {6.3, 2.92, 2.35, 1.83} respectively;
but as n → ∞, tn → 1.645. Thus for small samples the penalty for failure to know σ is not a
change in the actual point estimate, but an appreciable loss of accuracy which we may claim in our
estimate of µ. With large samples σ is determined by the data more and more accurately, and so
we approach the accuracy with σ known.

Now suppose there were many parameters {σ1, σ2 . . . σk} that all had to be integrated out. If
each had a comparable effect, then if k = n, no useful estimates would be possible at all. There seems
to be a general belief – presumably for this reason -that models with large numbers of parameters
are, ipso facto, intractable, any useful inference requiring that the number of observations be large
compared to te number of parameters. Thus various authors [such as Kempthorne and Folks (1971
p. 425)] repeat the folk-theorem that no inference is possible if the number of parameters is greater
than the number of different “statistics” that appear in the sampling distribution.

On the other hand, Lindley (1971) notes a problem of the type we study here, which pro-
vides a counter-example to the folk-theorem, the presence of many unwanted parameters doing no
appreciable harm. It will be important for us to understand the exact conditions for this good
behavior.

Linear Models–A First Look

There are pairs of “true” values (Xi, Yi) and the corresponding measured values (xi, yi),

xi = Xi + ei, i = 1, 2, . . . n

yi = Yi + fi

(21–1)

where the errors ei, fi are supposed independent and N(0, σx), N(0, σy) respectively; σx and σy

may be known, but usually are not. The probability, given {σx, σy, X1 . . . Xn, Y1 . . . Yn} that we
shall see the data D ≡ {(x1, y1), . . . , (xn, yn)}, within tolerances dx ≡ dx1 . . . dxn, dy ≡ dy1 . . . dyn,
is

p(dxdy|σxσyXY ) = (2πσxσy)−n exp
(
−1

2
R

)
dxdy (21–2)

where

R ≡
n∑

i=1

[
(xi −Xi)2

σ2
x

+
(yi − Yi)2

σ2
y

]
(21–3)

and we could integrate out either dx or dy to obtain the marginal distribution; i.e.,

p(dy|σy, Y ) =
(

1
2πσ2

y

)n
2

exp

{
−

∑
i

(yi − Yi)2

2σ2
y

}
dy. (21–4)

At this stage, we have two independent problems, of inference about Xi, Yi separately. But now
the problems are tied together by a “model”; i.e., a postulated functional relationship between X
and Y :
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f(X, Y, θ1, θ2, . . .) = 0 (21–5)

This model equation contains certain parameters θk; and the problem then becomes: to estimate
the θk. The common experimentalist’s problem of fitting a line to a set of data points, corresponds
to choosing the model equation

Yi = α + βXi (21–6)

and using the data to estimate (α, β).
Note that in the older literature the word “Linear” in “Linear Models” is usually taken to

mean that the model equation is linear in the parameters and in the errors, but not necessarily in
the measured variables. Thus Y 2

i = α + β cos Xi would be termed a “linear model” if ei, fi are
small enough so that we can write cos Xi = cosxi + ei sinxi, etc; but Yi = α2 + βxi would not [see,
for example, Graybill (1961); p. 97]. This terminology was unfortunate, because it is hard to invent
any model equation (21—5) that cannot, merely by a redefinition of {θi, X, Y }, be made linear in
the θi. Thus the term “linear” was almost meaningless as far as the real content of the theory was
concerned – it really meant only “small errors.”

The uninitiated were falling constantly into the trap of supposing that “linear” refers to the
fact that (23–6) is the equation of a straight line (and the term would be more appropriate and
useful if it did!). In 1985, M. DeGroot made a break with this terminology and redefined the term
“linear model” to mean straight-line fitting. We shall follow this reform in terminology.

Case 1. σx ≡ 0; σy known

The simplest case is that in which the error is all in the Y measurements (i.e., xi ≡ Xi), and σy

is known. The terms in σx are then absent, and the sampling distribution (21–4) is appropriate.
Using (21–6), it reduces to

p(dy|σy, α, β,X) =
(

1
2πσ2

y

)n
2

exp
[
− n

2σ2
y

Q(α, β)
]

dy (21–7)

where

Q(α, β) ≡ 1
n

n∑
i=1

(yi − α− βxi)2 (21–8)

is a positive definite quadratic form in α, β that proves to be fundamental in several problems
below. We digress to consider the many ways of writing this out in detail.

Forms of Q(α, β)

For various purposes, several different forms of Q(α, β) are convenient. Writing out (21–8) in full,
we get six terms:

Q(α, β) = y2 + α2 + β2x2 − 2αy + 2αβx− 2βxy (21–9)

where the sample first moments

x ≡ 1
n

∑
xi, y ≡ 1

n

∑
yi (21–10)
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and second moments

x2 ≡ 1
n

∑
x2

i , y2 ≡ 1
n

∑
y2

i , xy ≡ 1
n

∑
xiyi (21–11)

are, of course, known from the data. Often, we are interested primarily in β, not in α [for example,
a chemist may want to know how a reaction rate varies with temperature, a meteorologist may wish
to determine if there is evidence for a slow warming trend over the past decade; or an economist
may want to know how the demand for gasoline or steel varies with its price]. We will then want
to integrate α out of the problem. In preparation for this we must complete the square first on α:

Q(α, β) = (α− α′)2 + s2
x(β − β∗)2 + s2

y(1− r2). (21–12)

Here we have introduced the notation

α′ ≡ y − βx, β∗ ≡ sxy

s2
x

=
sy

sx
r (21–sam)

where the sample variances and covariance

s2
x ≡ x2 − x2, s2

y ≡ y2 − y2, sxy ≡ xy − xy (21–15)

and the sample correlation coefficient

r ≡ sxy

sxsy
(21–16)

are, of course, also known from the data. As is apparent already from (21–12), β∗ is going to
emerge as a “natural” estimator for β.

On the other hand, we might be interested primarily in α rather than β. [For example, a
physical chemist measuring ionic conductivity has to make measurements at finite concentrations
(= x); but it is the extrapolation to infinite dilution (x = 0) that is the fundamental quantity
to be compared with theory. Or, a spectroscopist may wish to determine atomic energy levels by
extrapolation the measurable Zeeman levels back to zero magnetic field, as in the famous Lamb
shift experiment.] In this case, we will want to integrate β out of the problem; completing the
square first on β, we get

Q(α, β) = x2(β − β′)2 +
s2

x

x2
(α− α∗)2 + s2

y(1− r2) (21–17)

where

β′ ≡ xy − αx

x2
(21–18)

and
α∗ ≡ y − β∗x (21–19)

is a “natural” estimator of α. Even at this stage, we can see that to make the estimates (α∗, β∗),
means that we would take the line passing through the data centroid (x, y) with slope β∗, as our
estimate of the “true” line.
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Finally, we may be interested in both α and beta, or in some function f(α, β) that involves both;
and we wish to get their joint posterior pdf p(dαdβ|D) in a form that treats them symmetrically.
For this we introduce the coefficients Cij of the quadratic form:

C(α, β) = c11(α− α∗)2 + 2C12(α− α∗)(β − β∗) + C22(β − β∗)2. (21–20)

Comparison with (21–8) shows that if we choose the matrix elements Cij to be

Cij =
(

1 x
x x2

)
(21–21)

we have

Q(α, β) = C(α, β) + s2
y(1− r2). (21–22)

Now, from this and (21–2), (21–7) we see that (since only the dependence on α and β matters;
i.e., any factors independent of α and β are going to be absorbed into normalizing constants anyway)
the joint likelihood of (α, β) may be taken simply as

L(α, β) = exp
{
− n

2σ2
C(α, β)

}
(21–23)

and so with uniform priors, their joint posterior distribution is the bivariate normal based on the
matrix C and peaked at (α∗, β∗). Writing p(dαdβ|D) = F (α, β)dαdβ, this joint posterior density
is

F (α, β) = A exp
{
− n

2σ2
C(α, β)

}
(21–24)

with

C(α, β) ≡ (α− α∗)2 + 2x(α− α∗)(β − β∗) + x2(β − β∗)2 (21–25)

and the normalizing constant is

A =
n

2πσ2
y

|det(C)|
1
2 =

nsx

2πσ2
y

. (21–26)

the second central moment of (21–24) are given by the inverse matrix to C:

D = C−1 =
1
s2

x

(
x2 −x
−x 1

)
. (21–27)

Thus

〈(α− α∗)2〉 =
σ2

y

n
D11 =

σ2
y

n

x2

s2
x

(21–28)

as may also be read off by inspection of (21–17); and

〈(β − β∗)2〉 =
σ2

y

n
D22 =

σ2
y

n

1
s2

x

(21–29)

as is evident from (23–12). The covariance is
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〈(α− α∗)(β − β∗)〉 =
σ2

y

n
D12 = −

σ2
y x

ns2
x

(21–30)

leading to the correlation coefficient

ρ =
〈(α− α∗)(β − β∗)〉

[〈(α− α∗)2〉〈(β − β∗)2〉]
1
2

= − x(
x2

) 1
2
. (21–31)

It is interesting that (21–28) – (21–31) involve only the x–measurements which are with error. Now
if σy is known and the x–measurements are without error, then often one can decide in advance how
many measurements to make, and as what values of xi; whereupon we know just what accuracy
our α and β estimates will have. The entire shape and width of the posterior (21–24) can be known
in advance of the experiment, only the location of the peak (α∗, β∗) awaiting the actual data.

Of course, this is a rather artificial and oversimplified example; it is not often that one knows
σy in advance. For most measurements it would be more realistic to go to the opposite extreme,
and suppose σy entirely undetermined by the prior information, whereupon it must be estimated
from the consistency of the data (i.e., if all the data points lie very accurately on a straight line,
our common sense tells us that σy must have been very small, etc).

Case 2. σx ≡ 0, σy Unknown

To express “complete initial ignorance” of σy we must, as noted in Chapter 12, use the Jeffreys
prior

p(dσ|X) =
dσy

σy
(21–32)

and the dependence of the likelihood on σy must be retained; thus we cannot use (21–23), but
must go back to the sampling distribution (21–7) which, in its dependence on {α, β, σy} gives their
joint likelihood:

L(α, β, σx) = σ−n
y exp

[
− n

2σ2
y

Q(α, β)
]

. (21–33)

With uniform priors for α and β, their joint posterior pdf has the form

p(dαdβdσy|D) = A′ dαdβdσy

σn+1
y

exp
[
− n

2σ2
y

Q(α, β)
]

(21–34)

and if we care only about α, β, we integrate out σy to obtain

p(dαdβ|D) = AQ−n/2dαdβ. (21–36)

The two normalizing constants being related by

A =
(

2
n

)n/2

Γ
(n

2

)
A′. (21–36)

We thus have the bivariate t-distribution (21—35), instead of the bivariate normal distribution
(21–24), as the price we incur for not knowing σy. The distributions are qualitatively similar,
the t-distribution having wider tails which, for small n, represent a significant deterioration in the
accuracy of our estimates.

*************************** MUCH MORE TO COME! *******************


