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CHAPTER 19

PHYSICAL MEASUREMENTS

We have seen, in Chapter 7, how the great mathematician Leonhard Euler was unable to solve the
problem of estimating 8 orbital parameters from 75 discrepant observations of the past positions
of Jupiter and Saturn. Thinking in terms of deductive logic, he could not even conceive of the
principles by which such a problem could be solved. But 38 years later Laplace, thinking in terms
of probability theory as logic, was in possession of exactly the right principles to resolve the Great
Inequality of Jupiter and Saturn. In this Chapter we develop the solution as it would be done
today by considering a simpler problem, estimating two parameters from three observations. But
our general solution, in matrix notation, will include Laplace’s automatically.

Reduction of Equations of Condition

Suppose we wish to determine the charge e and mass m of the electron. The Millikan oil-drop
experiment measures e directly. The deflection of an electron beam in a known electromagnetic
field measures the ratio e/m. The deflection of an electron toward a metal plate due to attraction
of image charges measures e2/m.

From the results of any two of these experiments we can calculate values of e and m. But all the
measurements are subject to error, and the values of e, m obtained from different experiments will
not agree. Yet each of the measurements does contain some information relevant to our question,
that is not contained in the others. Then how are we to process the data so as to make use of all the
information available and get the best estimates of e, m? What is the probable error remaining?
How much would the situation be improved by including still another experiment of given accuracy?
Probability theory gives simple and elegant answers to these questions.

More specifically, suppose we have the results of these experiments:
(1) measures e with ±2% accuracy
(2) measures (e/m) with ±1% accuracy
(3) measures (e2/m) with ±5% accuracy

Supposing the values of e, m approximately known in advance, e ≈ e0, m ≈ m0, the measurements
are then linear functions of the corrections. Write the unknown true values of e and m as

e = e0(1 + x1)
m = m0(1 + x2)

(19–1)

then x1, x2 are dimensionless corrections, small compared to unity, and our problem is to find the
best estimates of x1, x2. The results of the three measurements are three numbers M1, M2, M3

which we write as

M1 = e0(1 + y1)

M2 =
e0

m0
(1 + y2)

M3 =
e2
0

m0
(1 + y3)

(19–2)
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where the yi are also small dimensionless numbers which are defined by (19–2) and are therefore
known in terms of the old estimates e0, m0 and the new measurements M1, M2, M3. On the other
hand, the true values of e, e/m, e2/m are expressible in terms of the xi:

e = e0(1 + x1)

e

m
=

e0(1 + x1)
m0(1 + x2)

=
e0

m0
(1 + x1 − x2 + . . .)

e2

m
=

e2
0(1 + x1)2

m0(1 + x2)
=

e0

m0
(1 + 2x1 − x2 + . . .)

(19–3)

where higher order terms are considered negligible. Comparing (19–2) and (19–3) we see that if
the measurements were exact we would have

y1 = x1

y2 = x1 − x2

y3 = 2x1 − x2

(19–4)

But taking into account the errors, the known yi are related to the unknown xj by

y1 = a11x1 + a12x2 + δ1

y2 = a21x1 + a22x2 + δ2

y3 = a31x1 + a32x2 + δ3

(19–5)

where the coefficients aij form a (3× 2) matrix:

A =

 a11 a12

a21 a22

a31 a32

 =

 1 0
1 −1
2 −1

 (19–6)

and the δi are the unknown fractional errors of the three measurements. For example, the statement
that δ2 = −0.01 means that the second measurement gave a result one per cent too small.

More generally, we have n unknown quantities {x1 . . . xn} to be estimated from N imperfect
observations {y1 . . . yN}, and the N “equations of condition:”

yi =
n∑

j=1

aijxj + δi, i = 1, 2, . . . , N (19–7)

or, in matrix notation,

y = Ax + δ (19–8)
where A is an (N×n) matrix. In the present discussion we suppose the problem “overdetermined” in
the sense that N > n. This condition defeated Euler (1749), who was facing the case N = 75, n = 8.
But we keep in mind that the cases N = n (ostensibly well–posed) and N < n (underdetermined)
can also arise in real problems, and it will be interesting to see what probability theory has to say
about those cases.

In the early 19’th Century, it was common to reason as follows. It seems plausible that the best
estimate of each xj will be some linear combination of all the yi, but if N > n we cannot simply
solve equation (19–8) for x, since A is not a square matrix and has no inverse. However, we can get
a system of equations solvable for x if we take n linear combinations of the equations of condition;
i.e., if we multiply (19–8) on the left by some (n×N) matrix B. Then the product BA exists and



1903 Chap. 19: PHYSICAL MEASUREMENTS 1903

is a square (n×n) matrix. Choose B so that (BA)−1 exists. Then the linear combinations are the
n rows of

By = BAx + Bδ , (19–9)
which has the unique solution

x = (BA)−1B(y − δ) . (19–10)
If the probabilities of various fractional errors δi are symmetric: p(δi) = p(−δi) so that 〈δi〉 = 0,
then corresponding to any given matrix B the “best” estimate of xj by almost any reasonable loss
function criterion will be the j’th row of

x̂ = (BA)−1By , (19–11)
but by making different choices of B (i.e., taking different linear combinations of the equations of
condition) we get different estimates. In Euler’s problem there were billions of possible choices.
Which choice of B is best?

In the above we have merely restated, in modern notation but old language, the problem of
“reduction of equations of condition” described in Laplace’s Essai Philosophique (1819). A popular
criterion for solution was the principle of least squares; find that matrix B for which the sum of
the squares of the errors in x̂j is a minimum; or perhaps use a weighted sum. This problem can be
solved directly; we shall find the same solution by different reasoning below.

Reformulation as a Decision Problem

But we really solved this problem in Chapter 13, where we have seen in generality that the best
estimate of any parameter, by the criterion of any loss function, is found by applying Bayes’ theorem
to find the probability, conditional on the data, that the parameter lies in various intervals, then
making that estimate which minimizes the expected loss taken over the posterior probabilities.

Now in the original formulation of the problem, as given above, it was only a plausible con-
jecture that the best estimate of xj is a linear combination of the yi as in Equation (19–11). The
material in Chapter 13 shows us a much better way of formulating the problem, in which we don’t
have to depend on conjecture. Instead of trying to take linear combinations without knowing which
combinations to take, we should apply Bayes’ theorem directly to the equations of condition. Then,
if the best estimates are indeed of the linear form (19–11), Bayes’ theorem should not only tell us
that fact, it will give us automatically the best choice of the matrix B and also tell us the accuracy
of those estimates, which least squares does not give at all.

Let’s do this calculation for the case that we assign independent gaussian probabilities to
the errors δi of the various measurements. From our discussion in Chapter 7 we expect this to
be, nearly always, the best error law we can assign from the information we have. But in the
orthodox literature one would not see it that way; instead one would argue that in most physical
measurements the total error is the sum of contributions from many small, causally independent
imperfections, and the central limit theorem would then lead us to a gaussian frequency distribution
of errors.‡ There is nothing wrong with that argument, except that it has been psychologically
misleading to generations of workers, who concluded that if the frequency distribution of errors is
not in fact gaussian, then to assign a gaussian probability distribution is to “assume” something
that is not true; and this will lead to some horrible kind of error in our final conclusions.
Sermon on Gaussian Error Distributions. The considerations of Chapter 7 reassure us that
this danger is grossly exaggerated; the point is that in probability theory as logic, the gaussian

‡ As noted in Chapter 14, this is subject to an important qualification; that in general the gaussian
approximation will be good only for those values of total error δ which can arise in many different ways
by combination of the individual elementary errors. For unusually wide deviations we do not expect, and
hardly ever observe, gaussian frequencies.
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probability assignment is not an assumption about the frequencies of the errors; it is a description
of our state of knowledge about the errors. We hardly ever have prior knowledge about the errors
beyond the general magnitude to be expected, which we can interpret reasonably as specifying the
first two moments of the error distribution. This leads, by the principle of maximum entropy, to a
gaussian probability assignment as the one which agrees with that information without assuming
anything else. The region Ω of reasonably probable noise vectors (δ1 · · · δN ) or the region Ax + Ω
of reasonably probable data vectors, is then as large as it can be while agreeing with the second
moment constraints. The frequency distribution of errors is almost always unknown before seeing
the data; but even it if is far from gaussian, the gaussian probability assignment will still lead us
to the best inferences possible from the information we have.

The privileged status of a gaussian frequency distribution lies in a more subtle fact: acquisition
of new information does not affect our inferences if that new information is only what we would
have predicted from our old information. Thus if we assigned gaussian probabilities and then
acquired new information that the true frequency distribution of errors is indeed gaussian with the
specified variance, this would not help us because it is only what we would have predicted. But if
we had additional prior information about the specific way in which the error frequencies depart
from gaussian, that would be cogent new information constraining the possible error vectors to a
smaller domain Ω1 ⊂ Ω. This would enable us to improve our parameter estimates over the ones to
be obtained below, because data vectors in the complementary set Ω− Ω1, which were previously
dismissed as noise, are now recognized as indicating a real “signal”. Bayes’ theorem does all this
for us automatically.

Thus the covenant that we have with Nature is more favorable than supposed in orthodox
teaching; for given second moments a nongaussian frequency distribution will not make our infer-
ences worse; but knowledge of a nongaussian distribution would make them still better than the
results to be found below.

Encouraged by the message of this Sermon, we assign the probability for the errors {δ1 · · · δN}
lie in the intervals {dδ1 · · · dδN} respectively, as

p(δ1 · · · δN )dδ1 · · · dδN = (const.) exp

[
−1

2

N∑
i=1

wiδ
2
i

]
dδ1 · · · dδN (19–12)

where the “weight” wi is the reciprocal variance of the error of the i’th measurement. For example,
the crude statement that the first measurement has ±2 per cent accuracy, now becomes the more
precise statement that the first measurement has weight

w1 =
1
〈δ2

1〉
=

1
(0.02)2

= 2500 (19–13)

For the time being we suppose these weights known, as is generally the case with astronomical
and other physical data. From (19–7) and (19–12) we have immediately the sampling probability
density for obtaining measured values {y1 · · · yN} given the true values {x1 · · ·xN}:

p(y1 · · · yN | x1 · · ·xn) = C1 exp

−1
2

N∑
i=1

wi

yi −
n∑

j=1

aijxj

2
 (19–14)

where C1 is independent of the yi. According to Bayes’ theorem, if we assign uniform prior proba-
bilities to the xj , then the posterior probability density for the xj , given the actual measurements
yi, is of the form
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p(x1 · · ·xn | y1 · · · yN ) = C2 exp

−1
2

N∑
i=1

wi

yi −
n∑

j=1

aijxj

2
 (19–15)

where now C2 is independent of the xj . Next, as in nearly all gaussian calculations, we need to
reorganize this quadratic form to bring out the dependence on the xi. Expanding it, we have

N∑
i=1

wi

yi −
n∑

j=1

aijxj

2

=
N∑

i=1

wi

y2
i − 2yi

n∑
j=1

aijxj +
n∑

j,k=1

aijaikxjxk


=

n∑
j,k=1

Kjkxixk − 2
n∑

j=1

Ljxj +
N∑

i=1

wiy
2
i

(19–16)

where

Kjk =
N∑

i=1

wiaijaik , Lj =
N∑

i=1

wiyiaij (19–17)

or, defining a diagonal “weight” matrix Wij = wiδij , we have a matrix K and a vector L:

K = ÃWA , L = ÃWy (19–18)
where Ã is the transposed matrix. We want to write (19–15) in the form

p(x1 · · ·xn | y1 · · · yN ) = C3 exp

−1
2

n∑
j,k=1

Kjk(xj − x̂j)(xk − x̂k)

 (19–19)

whereupon the x̂j will be the mean value estimates desired. Comparing (19–16) and (19–19) we
see that

n∑
k=1

Kjkx̂k = Lj (19–20)

so if K is nonsingular we can solve uniquely for x̂.

The Underdetermined Case: K is Singular

If we have fewer observations than parameters, N < n, then from (19–17), K is still an (n × n)
matrix, but it is at most of rank N , and so is necessarily singular. Then the trouble is not that
(19–20) has no solution; but rather that it has an infinite number of them. The maximum likelihood
is attained not at a point, but on an entire linear manifold of dimensionality n − N . Of course,
maximum likelihood solutions still exist as is seen from the fact that, although (ÃWA)−1 does not
exist, (AÃ)−1 does, and so the parameter estimate

x∗ = Ã(AÃ)−1y (19–21)

now makes the quadratic form in (19–15) vanish: y = Ax∗, achieving the maximum possible
likelihood. This is called the canonical inverse solution, and the MAXENT.EXE program described
in Appendix H has an option which will calculate it for you. But the canonical inverse is far
from unique; for we see from (19–8) that if we add to the estimate (19–21) any solution z of the
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homogeneous equation Az = 0, we have another estimate x∗ + z with just as high a likelihood; and
there is a linear manifold ∆ of such vectors x∗ + z, of dimensionality n−N .

Exercise 19.1. Show that the canonical inverse solution (19–21) is also a least squares one,
making

∑
(x∗i )

2 a minimum on the manifold ∆. Unfortunately, there seems to be no compelling
reason why one should want the vector of estimates to have minimum length.

For a long time no satisfactory way of dealing with such problems was recognized; yet we are
not entirely helpless, for the data do restrict the possible values of the parameters {xi} to a “feasible
set” ∆ satisfying (19–20). The data alone are incapable of picking out any unique point in this
set; but the data may be supplemented with prior information which enables us to make a useful
choice in spite of that. These are “generalized inverse” problems, which are of current importance
in many applications such as image reconstruction. In fact, in the real world, generalized inverse
problems probably make up the great majority, because the real world seldom favors us with all
the information needed to make a well–posed problem. Yet useful solutions may be found in many
cases by maximum entropy which resolves the ambiguity in a way that is “optimal” by several
different criteria, as described in Chapters 11 and 24.

The Overdetermined Case: K Can be Made Nonsingular

By its definition (19–17), K is an (n× n) matrix, and for all real {q1 · · · qn} such that
∑

q2
i > 0,

n∑
j,k=1

Kjkqj qk =
N∑

i=1

wi

 n∑
j=1

aijqj

2

≥ 0 (19–22)

so if K is of rank n it is not only nonsingular, but positive definite. If N ≥ n this will be the case
unless we have done something foolish in setting up the problem – including a useless observation
or an irrelevant parameter.

For, in the first place, we suppose all the weights wi to be positive; if any observation yi has
weight wi = 0, then it is useless in our problem; that is, it can convey no information about the
parameters and we should not have included it in the data set at all. We can reduce N by one.

Secondly, if there is a nonzero vector q for which
∑

j aijqj is zero for all i, then in (19–7) for
all c, the parameter sets {xj} and {xj + cqj} would lead to identical data, and so could not be
distinguished whatever the data. In other words, there is an irrelevant parameter in the problem
which has nothing to do with the data; we can reduce n by one. Mathematically, this means that
the columns of the matrix A are not linearly independent; then if qk 6= 0, we can remove the
parameter xk and the k’th column of A with no essential change in the problem (i.e., no change in
the information we get from it).

Removing irrelevant observations and parameters if necessary, if finally the number of cogent
observations is at least as great as the number of relevant parameters, then K is a positive definite
matrix and (19–20) has a unique solution

x̂k =
n∑

j=1

(K−1)kjLj . (19–23)

From (19–18), we can write the result as

x̂ = (ÃWA)−1ÃWy (19–24)
and, comparing with (19–11), we see that in the gaussian case with uniform prior probabilities, the
best estimates are indeed linear combinations of the measurements, of the form (19–11), and the
best choice of the matrix B is
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B = ÃW, (19–25)
a result perhaps first found by Gauss, and repeated in Laplace’s work referred to. Let us evaluate
this solution for our simple problem.

Numerical Evaluation of the Result

Applying the solution (19–24) to our problem of estimating e and m, the measurements of e, (e/m),
(e2/m) were of 2%, 1%, 5% accuracy respectively, and so

w2 =
1

(0.01)2
= 10, 000

w3 =
1

(0.05)2
= 400

(19–26)

and we found w1 = 2500 before. Thus we have

B = ÃW =
(

1 1 2
0 −1 −1

)  w1 0 0
0 w2 0
0 0 w3

 =
(

w1 w2 2w3

0 −w2 −w3

)
(19–27)

K = ÃWA =
(

(w1 + w2 + 4w3) −(w2 + 2w3)
−(w2 + 2w3) (w2 + w3)

)
(19–28)

K−1 = (ÃWA)−1 =
1
|K|

(
(w2 + w3) (w2 + 2w3)
(w2 + 2w3) (w1 + w2 + 4w3)

)
(19–29)

where

|K| = det(K) = w1w2 + w2w3 + w3w1 (19–30)
Thus the final result is

(ÃWA)−1ÃW =
1
|K|

(
w1(w2 + w3) −w2w3 w2w3

w1(w2 + 2w3) −w2(w1 + 2w3) w3(w2 − w1)

)
(19–31)

and the best point estimates of x1, x2 are

x̂1 =
w1(w2 + w3)y1 + w2w3(y3 − y2)

w1w2 + w2w3 + w3w1

x̂2 =
w1w2(y1 − y2) + w2w3(y3 − 2y2) + w3w1(2y1 − y3)

w1w2 + w2w3 + w3w1

(19–32)

Inserting the numerical values of w1, w2, w3, we have

x̂1 =
13
15

y1 +
2
15

(y2 − y3)

x̂2 =
5
6
(y1 − y2) +

2
15

(y3 − 2y2) +
1
30

(2y1 − y3)

(19–33)

which exhibits the best estimates as weighted averages of the estimates taken from all possible pairs
of experiments. Thus, y1 is the estimate of x1 obtained in the first experiment, which measures e di-
rectly. The second and third experiments combined yield an estimate of e given by (e2/m)(e/m)−1.
Since
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e2
0

m0
(1 + y3)

e0
m0

(1 + y2)
≈ e0(1 + y3 − y2) (19–34)

(y3 − y2) is the estimate of x1 given by experiments 2 and 3. Equation (19–33) says that these two
independent estimates of x1 should be combined with weights 13/15, 2/15. Likewise, x̂2 is given
as a weighted average of three different (although not independent) estimates of x2.

Accuracy of the Estimates

From (19–19) we find the second central moments of p(x1 . . . xn | y1 . . . yN ):

〈(xj − x̂j)(xk − x̂k)〉 = 〈xjxk〉 − 〈xj〉〈xk〉 = (K−1)jk (19–35)
Thus from the (n× n) inverse matrix

K−1 = (ÃWA)−1 (19–36)
already found in our calculation of x̂j , we can also read off the probable errors, or more conveniently,
the standard deviations. From (19–29) we can state the results in the form (mean) ± (standard
deviation) as

(xj)est = x̂j ±
√

(K−1)jj . (19–37)
Equations (19–24) and (19–37) represent the general solution of the problem, which Euler needed.
In the present case this is

(x1)est = x̂1 ±
[

w2 + w3

w1w2 + w2w3 + w3w1

]1/2

(x2)est = x̂2 ±
[

w1 + w2 + 4w3

w1w2 + w2w3 + w3w1

]1/2
(19–38)

with numerical values
x1 = x̂1 ± 0.0186
x2 = x̂2 ± 0.0216

(19–39)

so that from the three measurements we obtain e with ±1.86 per cent accuracy, m with ±2.16 per
cent accuracy.

How much did the rather poor measurement of (e2/m), with only ±5 per cent accuracy, help
us? To answer this, note that in the absence of this experiment we would have arrived at conclusions
given by (19–28), (19–46) and (19–32) in the limit w3 → 0. The results (also easily verified directly
from the statement of the problem) are

x̂1 = y1

x̂2 = y1 − y2

(19–40)

K−1 =
1

w1w2

(
w2 w2

w2 (w1 + w2)

)
(19–41)

or, the (mean) ± (standard deviation) values are

x1 = y1 ±
1
w1

= y1 ± 0.020

x2 = y1 − y2 ±
[
w1 + w2

w1w2

]1/2

= y1 − y2 ± 0.024
(19–42)
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As might have been anticipated by common sense, a low–accuracy measurement can add very little
to the results of accurate measurements, and if the (e2/m) measurement had been much worse than
±5 per cent it would hardly be worthwhile to include it in our calculations. But suppose that an
improved technique gives us an (e2/m) measurement of ±2 per cent accuracy. How much would
this help? The answer is given by our previous formulas with w1 = w3 = 2500, w2 = 10, 000. We
find now that the mean-value estimates give much higher weight to the estimates using the (e2/m)
measurement:

x̂1 = 0.556y1 + 0.444(y3 − y2)
x̂2 = 0.444(y1 − y2) + 0.444(y3 − 2y2) + 0.112(2y1 − y3)

(19–43)

which is to be compared with (19–33). The standard deviations are given by

x1 = x̂1 ± 0.0149
x2 = x̂2 ± 0.020

(19–44)

The accuracy of e (x1) is improved roughly twice as much as that of m (x2), since the improved
measurement involves e2, but only the first power of m.

Exercise 19.2. Write a computer program which solves this problem for general N and n,
with N ≥ n, and test it on the problem just solved. Estimate how long it would require for
the compiled program to solve Euler’s problem. A usable routine for matrix inversion is given
in the source code file MAXENT.BAS, lines 600–850. The same routine is included in many
FORTRAN packages.

Generalization

In the above we supposed the weights wi known from prior information. If this is not the case,
there are many different conceivable kinds of partial prior information about them, leading to many
different possible prior probability assignments p(w1 · · ·wn|I). Let us see how this circumstance
would change the above solutions.

********************** MORE TO COME HERE! ***************************

COMMENTS

A Paradox. We can learn many more things from studying this problem. For example, let us
note something which you will find astonishing at first. If you study Equation (19–32), which gives
the best estimate of m from the three measurements, you will see that y3, the result of the (e2/m)
measurement, enters into the formula in a different way than y1 and y2. It appears once with a
positive coefficient, and once with a negative one. If w1 = w2, these coefficients are equal and
(19–32) collapses to

x̂2 = y1 − y2 (19–45)
Now, realize the full implications of this: it says that the only reason we make use of the (e2/m)
measurement in estimating m is that the (e) measurement and the (e/m) measurement have different
accuracy. No matter how accurately we know (e2/m), if the (e) and (e/m) measurements happen
to have the same accuracy, however poor, then we should ignore the good measurement and base
our estimate of m only on the (e) and (e/m) measurements!

We think that, on first hearing, your intuition will revolt against this conclusion, and your first
reaction will be that there must be an error in Equation (19–32). So, check the derivation at your
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leisure. This is a perfect example of the kind of result which probability theory gives us almost
without effort, but which our unaided common sense might not notice in years of thinking about
the problem. We won’t deprive you of the pleasure of resolving this “paradox” for yourself, and
explaining to your friends how it can happen that consistent inductive reasoning may demand that
you throw away your best measurement.

In Chapter 17, we complained about the fact that orthodox statisticians sometimes throw
away relevant data in order to fit a problem to their preconceived model of “independent random
errors.” Are we now guilty of the same offense? No doubt, it looks very much that way! Yet we
plead innocence; the numerical value of (e2/m) is in fact irrelevant to inference about m, if we
already have measurements of e and e/m of equal accuracy. To see this, suppose that we knew
(e2/m) exactly from the start. How would you make use of that information in this problem? If you
try to do this, you will soon see why (e2/m) is irrelevant. But to clinch matters, try the following
exercise:

Exercise 19.3. Consider a specific case: w1 = w2 = 1, w3 = 100; the third measurement is
ten times more accurate than the first two. If the third measurement cancels out when we try to
use all three as in (19–22), then it seems that the only way we could use the third measurement is
by discarding either the first or second. Show that, nevertheless, the estimates made by (19–32)
using only the first and second measurements are more accurate than those made by using the
first and third; or the second and third. Now explain intuitively why the paradox is not real.

As another example, it is important that we understand the way our conclusions depend on
our choice of loss functions and probability distributions for the errors δi. If we use instead of
the gaussian distribution (19–12) one with wider tails, such as the Cauchy distribution p(δ) ∝
(1 + wδ2/2)−1, the posterior distribution p(x1x2 | y1y2y3) may have more than one peak in the
(x1, x2)-plane. Then a quadratic loss function, or more generally any concave loss function (i.e.,
doubling the error more than doubles the loss) will lead one to make estimates of x1 and x2 which
lie between the peaks, and are known to be very unlikely. With a convex loss function a different
“paradox” appears, in that the basic equation (19–46) for constructing the best estimator may have
more than one solution, with nothing to tell us which one to use.

The appearance of these situations is the robot’s way of telling us this: our state of knowledge
about x1 and x2 is too complicated to be described adequately simply by giving best estimates and
probable errors. The only honest way of describing what we know is to give the actual distribution
p(x1x2|y1y2y3). This is one of the limitations of decision theory, which we need to understand in
order to use it properly.


