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CHAPTER 17

PRINCIPLES AND PATHOLOGY OF ORTHODOX STATISTICS

“The development of our theory beyond this point, as a practical statistical theory, involves
· · · all the complexities of the use, either of Bayes’ Law on the one hand, or of those
terminological tricks in the theory of likelihood on the other, which seem to avoid the
necessity for the use of Bayes’ law, but which in reality transfer the responsibility for its
use to the working statistician, or the person who ultimately employs his results.” · · ·
Norbert Wiener (1948)

To the best of our knowledge, Norbert Wiener never actually applied Bayes’ theorem in a published
work; yet he perceived the logical necessity of its use as soon as one builds beyond the sampling
distributions involved in his own statistical work. From our viewpoint, the necessity for this was
established already in Chapter 2. In the present Chapter we are not concerned particularly with any
abstract theory or with mathematical techniques; but rather with showing some of the pragmatic
consequences of failing to use Bayesian methods in some very simple problems, where the mysteries
of infinite sets never arise. These simple problems are just the ones that the “orthodox” school of
thought believed that it had solved without using Bayesian methods; but in every case experience
with the orthodox solution revealed defects that were corrected at once by use of Bayesian methods.

In Chapter 16 we noted that the orthodox objections to Bayesian methods were always ideolog-
ical in nature, never examining the actual results that they give in real problems, and we expressed
astonishment that mathematically competent people would use such arguments. In order to give
a fair comparison, we need to adopt the opposite tactic here, and concentrate on examining the
pragmatic results. Indeed, since Bayesian methods have been so egregiously misrepresented in
the orthodox literature, we must lean over backwards to avoid misrepresenting orthodox methods
now; whenever orthodox methods do yield satisfactory results in some problem, we shall want to
acknowledge that fact, and we shall not deplore their use merely on ideological grounds (although
our educational purpose requires that we explain what the orthodox ideology is). On the other
hand, when a common orthodox procedure leads to a result that insults our intelligence, we shall
not hesitate to complain about it on pragmatic grounds. The demonstrable facts, which amount to
many different confirmations of what Cox’s theorems led us to expect, are quite sufficient to make
our point.

We have several independent ad hoc orthodox devices to consider. From the Neyman–Pearson
camp of orthodoxy we have the principles of unbiased estimators, confidence intervals, and hy-
pothesis tests which amount to a kind of decision theory. From the Fisherian camp there are
the principles of maximum likelihood, fiducial probability, randomization in design of experiments,
analysis of variance, and a mass of significance tests. Our present goal is to understand just what
results these principles yield in practice, independently of whatever rationale they might have to
the orthodoxian; in particular we want to know this: In what circumstances, and in what ways, do
the orthodox results differ from the Bayesian results?

Unbiased Estimators

****************************** MORE HERE! ***************************

Periodicity: The Weather in Central Park

A common problem, important in economics, meteorology, geophysics, and astronomy, is to de-
cide whether certain data taken over time provide evidence for a periodic behavior. Any clearly
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discernible periodic component (in business cycles, stock market, rainfall, temperature, incidence
of earthquakes, brightness of a star) provides an evident basis for improved prediction of future
behavior, on the presumption that periodicities observed in the past will tend to continue in the
future. But even the principle for analyzing the data to extract evidence of periodicity in the past
is still controversial: is it a problem of significance tests, or one of parameter estimation? Different
schools of thought come to opposite conclusions from the same data.

Bloomfield (1976, p. 110) gives a graph showing mean January temperatures observed over
about 100 years in Central Park, New York. The presence of a 20 year period with a peak–to–peak
amplitude of about 4o Fahrenheit is perfectly evident to the eye, since the irregular ‘noise’ is only
about 0.5o; yet Bloomfield rejects this as not significant by an orthodox significance test advocated
by Fisher.

In reconsidering this we note first that the data of the graph have been mutilated by taking a 10
year moving average. We must first understand what effect this has on the evidence for periodicity.
Let the original raw data be D = {y1 . . . yn} and define the discrete fourier transform

Y (ω) ≡
n∑

t=1

yt eiωt (17–b1)

This is well defined for continuous values of ω and is periodic: Y (ω) = Y (ω+2π). Therefore there is
no loss of information if we confine the frequency to |ω| < π. But even that is more than necessary;
the values of Y (ω) at any n consecutive and discrete ‘Nyquist frequencies’ ωk ≡ 2πk/n, 0 ≤ k < n
already contain all the information in the data, for the data can be recovered from them by the
fourier inversion:

1
n

n∑
k=1

Y (ωk) e−iωkt = yt, 1 ≤ t ≤ n (17–b2)

But suppose the data were replaced with an m–year moving average over past values, with weighting
coefficient of ws for lag s:†

zt ≡
m−1∑
s=0

yt−s ws (17–ba)

The new fourier transform would be, after some algebra,

Z(ω) =
n∑

t=1

zt eiωt = W (ω) Y (ω) (17–bb)

where

† Many authors here get involved in an annoying little semantic complication about exactly what one
means by an “m–year weighted average”. If we have only yt for t > 0, then it seems to many that an
m–year moving average can start only with zm. This leads to small “end effect” corrections of order m/n.
We have avoided this by a slight reinterpretation. Consider the original time series {yt} augmented by
“zero–padding”; we define yt ≡ 0 when t < 1 or t > n, and likewise the weighting coefficients are defined
to be zero when s < 0 or s ≥ m. Then we may understand the sums over t, s to be over (−∞, +∞),
and the terms (z1, · · · , zm−1) are actually weighted averages over less than m years. The differences are
numerically negligible for large n, but we gain the advantage that the simple formulas (17–b1) – (17–b4)
are all exact as they stand, without our having to bother with messy correction terms. This particular
choice of definition of terms (which were basically arbitrary anyway) is thus the one appropriate to the
subject. This same zero–padding technique is used extensively in dealing with fast fourier transforms, for
the same reason.
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W (ω) ≡
m−1∑
s=0

ws eiωs (17–bc)

is the fourier transform of the weighting coefficients. Thus taking any moving average of the data
merely multiplies its fourier transform by a known function. In particular, for uniform weighting:

ws =
1
m

, 0 ≤ s < m (17–bd)

we have

W (ω) =
1
m

m−1∑
s=0

e−iωs = exp[−i
ω

2
(m− 1)]

(
sin mω

2

m sin ω
2

)
. (17–be)

In the case m = 10 we find, for a ten–year and twenty–year periodicity respectively,

W (2π/10) = 0 ; W (2π/20) = 0.639 exp[−9πi/20] . (17–bf)
Thus, taking a ten–year moving average of any time series data represents an irreversible loss
of information; it completely wipes out any evidence for a ten–year periodicity, and reduces the
amplitude of a twenty–year periodicity by a factor .639 while shifting its phase by 9π/20 = 1.41
radians. We conclude that the original data had a twenty–year periodicity with a peak–to–peak
amplitude of about 4/.639 = 6.3 degrees F, even more obvious to the eye and nearly 90 degrees out
of phase with the periodicity visible in the moving average data.

At several places we warn against the common practice of pre–filtering data in this way before
analyzing them. The only thing it can possibly accomplish is the cosmetic one of making the
graph of the data look prettier to the eye. But if the data are to be analyzed by a computer, this
does not help in any way; it only throws away some of the information that the computer could
have extracted from the original, unmutilated data. It renders the filtered data useless for certain
purposes. For all we know, there might have been a strong ten–year periodicity in the original
data; but taking a ten–year moving average has wiped out all evidence for it.†

The periodogram of the data is then the power spectral density:

P (ω) ≡ 1
n
|Y (ω)|2 =

1
n

∑
t,s

yt ys eiω(t−s) (17–b3)

Note that P (0) = (
∑

yt)2/n = nȳ2 determines the mean value of the data, while the average of
the periodogram at the Nyquist frequencies is the mean square value of the data:

P (ωk)av =
1
n

n∑
k=1

P (ωk) = y2 (17–b4)

Fisher’s proposed test statistic for a periodicity is the ratio of peak/mean of the periodogram:

q =
P (ωk)max

P (ωk)av
(17–b5)

† This data filtering is the one–dimensional version of the practice of ‘apodization’ in optics, smearing out
an image in a way that makes it look to the eye easier to resolve close objects; while actually throwing
away highly cogent information about the fine details in the image, which a computer could have extracted,
leading to much better resolution that that apparent to the eye, if one had refrained from apodization. As
we have noted elsewhere (Jaynes, 1988) the process is singularly well–named; one who commits apodization
is, quite literally, shooting himself in the foot.
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and one computes its sampling distribution p(q|H0) conditional on the null hypothesis H0 that the
data are Gaussian white noise. Having observed the value q0 from our data, we find the probability
that chance alone would have produced a ratio as great or greater:

P ≡ p(q > q0|H0) =
∫ ∞

q0

p(q|H0) dq (17–b6)

and if P > 0.05 the hypothesis of periodicity is “rejected as not significant at the 5% level”.
Say something about P-values in general. Jeffreys, p. 316
But this test looks only at probabilities conditional on the “null hypothesis” that there is no

periodic term. It takes no note of probabilities of the data conditional on the hypothesis that a
periodicity is present; or on any prior information indicating whether it is reasonable to expect a
periodicity! We commented on this kind of reasoning in Chapter 5; how can one test any hypothesis
rationally if he fails to specify (1) the hypothesis to be tested; and (2) the alternatives against which
it is to be tested? Until we have done that, we have not asked any definite, well–posed question.

Equally puzzling, how can one expect to find evidence for a phenomenon that is real – if he
starts with all the cards stacked overwhelmingly against it? The only hypothesis that this test
considers is one which assumes that the totality of the data are part of a ‘stationary gaussian
random process’ without any periodic component. According to that assumption, the appearance
of anything resembling a sine wave would be purely a matter of chance; even if the noise conspires,
by chance, to resemble one cycle of a sine wave, it would still be only pure chance that would make
it resemble a second cycle of that wave.

But in almost every application one can think of, we know perfectly well that if a periodicity
is present, it is caused by some systematic influence that repeats itself; indeed, our interest in it is
due entirely to the fact that it will repeat . The hypothesis that we want to test – to see whether the
data give evidence for it – is crudely something like the opposite of the hypothesis that is assumed
in Fisher’s test.

But this is the peculiar logic that underlies all orthodox significance tests. In order to argue
for an hypothesis H, do it indirectly: invent a “null hypothesis” H0 that denies H, then argue
against H0. But of course, H0 is not the direct denial H of Aristotelian logic; indeed, H is usually
stated or implied to be a disjunction of many different hypotheses (in the present case, specifying
the period, amplitude, and phase of the periodic term), while H0 denies all of them while assuming
things (gaussian noise) that H neither assumes nor denies. To see how far this procedure takes us
from conventional logic, note the following difficulty: suppose we reject H0. Surely, we must also
reject probabilities conditional on H0; but then what was the logical justification for the decision?
Orthodox logic saws off its own limb.

Harold Jeffreys (1939, p. 316) expressed his astonishment at such reasoning: “an hypothesis
that may be true is rejected because it has failed to predict observable results that have not occurred.
This seems a remarkable procedure. On the face of it, the evidence might more reasonably be taken
as evidence for the hypothesis, not against it. The same applies to all the current significance tests
based on P–values.”

Thus if there is a periodicity in temperature, we mean that there is some periodic physical
influence at work, the nature of which is not known with certainty, but about which we could make
some reasonable conjectures. For example, periodicity in solar activity, already known to occur
by the periodically variable sunspot numbers, could conceivably cause a periodic variation in the
number of charged particles entering our atmosphere (indicated by the aurora borealis), varying the
ion concentration and therefore the number of raindrop condensation centers. This would cause
periodic variations in the cloud cover, and hence in the temperature and rainfall, which might
be very different in different locations on the earth because of prevailing atmospheric circulation
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patterns. We do not mean to say that we firmly believe this mechanism to be operating; only that
it is a conceivable one, which does not violate any known laws of physics, but whose magnitude is
difficult to estimate theoretically, and may or may not be sufficient to account for the data. But
its presence or absence could be determined by other observations, correlating other astronomical
and atmospheric electricity data with weather data at many different locations.

Contrast our position just stated with that of Feller (II, p 76–77), who delivers another polemic
against what he calls the “Old Wrong Way”. The result is that the procedure he recommends is
too feeble to extract any information from the data.

yt =
n∑

j=1

(Aj cos ωjt + Bj sinωjt)

We can always approximate yt this way. Then it seems that Aj , Bj must be “random variables”
if the {yt} are. Feller warns us against what he calls the Old Wrong Way: Fit to the data with
well-chosen frequencies {ω1 . . . ωn}. If one of the R2

j = A2
j + B2

j is big, say there is a true period,
assume all Aj , Bj ∼ N(0, σ). He writes of this:

“For a time it was fashionable to introduce models of this form and to detect ‘hidden peri-
odicities’ for sunspots, wheat prices, poetic creativity, etc. Such hidden periodicities used to be
discovered as easily as witches in medieval times, but even strong faith must be fortified by a sta-
tistical test. A particularly large amplitude Rj is observed; One wishes to prove that this cannot
be due to chance and hence that ωj is a true period. To test this conjecture one asks whether the
large observed value of R is plausibly compatible with the hypothesis that all n components play
the same role.

He states that the usual procedure was to assume the Aj , Bj iid normal N(0, σ),‡ then the
R2

j are held to be indepdendent with an exponential distribution with expectation 2σ2. “If an
observed value R2

j deviated ‘significantly’ from this predicted expectation it was customary to
jump to the conclusion that the hypothesis of equal weights was untenable, and Rj represented a
‘hidden periodicity.’” At this point, Feller detects that we are using the wrong sampling distribution:

“The fallacy of this reasoning was exposed by R. A. Fisher (1929) who pointed out that the
maximum among n independent observations does not obey the same probability distribution as
each variable taken separately. The error of treating the worst case statistically as if had been chosen
at random is still common in medical statistics, but the reason for discussing the matter here is the
surprising and amusing connection of Fisher’s test of significance with covering theorems.”

The quantities

Vj =
R2

j∑
R2

j

, 1 ≤ j ≤ n

are distributed as the lengths of the n segments into which the interval (0,1) is partitioned by a
random distribution of n − 1 points. The probability that all Vj < a is given by the covering
theorem of W. L. Stevens (I, 9.9).

Of course, our position is that this sampling distribution urged on us by both Fisher and Feller
is quite irrelevant to the inference; the two quantities that are relevant (the prior information and
the likelihood function) are not even mentioned by Fisher or Feller, so they are in no position to
draw inferences about anything.

‡ The abbreviation “iid”” is orthodox jargon standing for “Independently and Identically Distributed”.
For us, this is another form of the Mind Projection Fallacy; it considers the probablity distribution to be a
real physical property of the Aj , Bj , in spite of the obvious fact that each individual coefficient is a definite,

if unknown quantity; it is not “distributed” at all!
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In any event, the bottom line of this discussion is that Fisher’s test fails to detect the 20
year periodicity in the New York Central Park January temperatures, although that periodicity is
perfectly obvious to the eye without any calculation.

But this is not the only case where ordinary common–sense examination of the data is a
more powerful tool for inference than the principles taught in orthodox textbooks. Crow, Davis &
Maxfield (1960) F–test - analyzed in Jaynes 1976 examples of t-test and F–test.

Now we examine a Bayesian analysis of these same data. Prior information: it is surely safe
to say that we knew in advance that A,B must be less than 100o F. If there were a temperature
variation that large, New York City would not exist; there would have been a panic evacuation of
that area long before.

Can We Achieve Bayesian – Orthodox Equivalence?

When one who thinks habitually in orthodox terms contemplates Bayesian methods with the
thought of looking for a compromise, he seems to be interested only in finding the prior prob-
abilities that would make the Bayesian results the same as the orthodox ones for, say, interval
estimation. Then he intends that Bayesians are to use henceforth only that prior, so that all prag-
matic reasons for contention disappear. The Bayesian, of course, has no such intentions; for one of
the main advantages of Bayesian methods is that by use of varions prior probabilities they achieve
pragmatic results far beyond those accessible to orthodox methods. We saw a striking example in
the different results for inversion of the Urn sampling distribution, in Chapter 6.

But the idea of a prior that makes the procedures equivalent in final numerical results is useful
to the Bayesian for just the opposite reason; it facilitates meaningful comparison of the Bayesian
and orthodox results, making it easy to demonstrate the pragmatic superiority of the Bayesian
results. Such a prior p(θ|I) would be, in a sense uninformative. But does it always exist?

D. J. Bartholomew (1970) made some conjectures to the effect that prior p(θ|I) ∝ [I(θ)]−1/2

where I(θ) is the Fisher information, would accomplish this approximately, but his calculations did
not really establish this. However, the exact answer is obvious to a Bayesian who thinks in terms
of information content rather than frequencies:

(1) The orthodox results depend on which estimator the orthodoxian has chosen to use;
so the results cannot always be equivalent.

(2) The Bayesian procedure always extracts all of the relevant information from the data
x ≡ {x1 · · ·xn}. The orthodox procedure does so only if the estimator is a sufficient
statistic. Therefore, such a prior cannot exist if there is no sufficient statistic (or if
the orthodoxian has chosen to use an estimator which is not a sufficient statistic, even
though one exists).
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