appe1, 9/19/2004 09:51

APPENDIX E

MULTIVARIATE GAUSSIAN INTEGRALS

Starting from the formula

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi} \tag{E-1}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\int \ldots \int_{-\infty}^{\infty} d x_{1} \ldots d x_{n} \exp \left\{-\frac{1}{2} \sum_{i=1}^{n} a_{i} x_{i}^{2}\right\}=\frac{(2 \pi)^{n / 2}}{\sqrt{a_{1} a_{2} \ldots a_{n}}}, \quad a_{i}>0 \tag{E-2}
\end{equation*}
$$

Now carry out a real nonsingular linear transformation:

$$
\begin{equation*}
x_{i}=\sum_{j=1}^{n} B_{i j} q_{j}, \quad 1 \leq i \leq n \tag{E-3}
\end{equation*}
$$

where $\operatorname{det}(B) \neq 0$. Then, going into matrix notation,

$$
\begin{equation*}
\sum a_{i} x_{i}^{2}=q^{T} B^{T} A B q=q^{T} M q \tag{E-4}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{i j} \equiv a_{i} \delta_{i j} \tag{E-5}
\end{equation*}
$$

is a positive definite diagonal matrix. The volume element transforms according to the Jacobian rule

$$
\begin{equation*}
d x_{1} \ldots d x_{n}=|\operatorname{det}(B)| d q_{1} \ldots d q_{n} \tag{E-6}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det}(M)=\operatorname{det}\left(B^{T} A B\right)=[\operatorname{det}(B)]^{2} \operatorname{det}(A) . \tag{E-7}
\end{equation*}
$$

The matrix M is by definition real, symmetric, and positive definite; and by proper choice of A, B any such matrix may be generated in this way. The integral (E-2) may then be written as

$$
\begin{equation*}
\int \ldots \int \exp \left\{-\frac{1}{2} q^{T} M q\right\}|\operatorname{det}(B)| d q_{1} \ldots d q_{n} \tag{E-8}
\end{equation*}
$$

and so the general multivariate Gaussian integral is

$$
\begin{equation*}
I=\int \ldots \int \exp \left[-\frac{1}{2} q^{T} M q\right] d q_{1} \ldots d q_{n}=\frac{(2 \pi)^{n / 2}}{\sqrt{\operatorname{det}(M)}} \tag{E-9}
\end{equation*}
$$

Partial Gaussian Integrals. Suppose we don't want to integrate over all the $\left\{q_{1} \ldots q_{n}\right\}$, but only the last $r=n-m$ of them;

$$
\begin{equation*}
I_{m} \equiv \int \ldots \int \exp \left\{-\frac{1}{2} q^{T} M q\right\} d q_{m+1} \ldots d q_{n} \tag{E-10}
\end{equation*}
$$

to do this, break M down into submatrices

$$
M=\left(\begin{array}{cc}
U_{0} & V \tag{E-11}\\
V^{T} & W_{0}
\end{array}\right)
$$

and likewise separate the vector q in the same way:

$$
\begin{equation*}
q=\binom{u}{w} \tag{E-12}
\end{equation*}
$$

by writing $\left\{q_{1}=u_{1}, \ldots, q_{m}=u_{m}\right\}$ and $\left\{q_{m+1}=w_{1}, \ldots, q_{n}=w_{r}\right\}$. Then

$$
M q=\left(\begin{array}{cc}
U_{0} & V \tag{E-13}\\
V^{T} & W_{0}
\end{array}\right)\binom{u}{w}
$$

and

$$
\begin{equation*}
q^{T} M q=u^{T} U_{0} u+u^{T} V w+w^{T} V^{T} u+w^{T} W_{0} w \tag{E-14}
\end{equation*}
$$

so that I_{m} becomes

$$
\begin{equation*}
I_{m}=\exp \left(-\frac{1}{2} u^{T} U_{0} u\right) \int \ldots \int \exp \left\{-\frac{1}{2}\left[w^{T} W_{0} w+u^{T} V w+w^{T} V^{T} u\right]\right\} d w_{1} \ldots d w_{r} \tag{E-15}
\end{equation*}
$$

To prepare to integrate out w, first complete the square on w by writing the exponent as

$$
\begin{equation*}
[]=(w-\hat{w})^{T} W_{0}(w-\hat{w})+C \tag{E-16}
\end{equation*}
$$

and equate terms in (E-14) and (E-16) to find \hat{w} and C :

$$
\begin{equation*}
w^{T} W w+u^{T} V w+w^{T} V^{T} u=w^{T} W_{0} w-\hat{w}^{T} W_{0} w-w^{T} W_{0} \hat{w}+\hat{w}^{T} W_{0} \hat{w}+C \tag{E-17}
\end{equation*}
$$

This requires (since it must be an identity in w):

$$
\begin{gather*}
u^{T} V=-\hat{w}^{T} W_{0} \tag{E-18}\\
V^{T} u=-W_{0} \hat{w} \tag{E-19}\\
\hat{w}^{T} W_{0} w+C=0 \tag{E-20}\\
\text { or, } \hat{w}=-W_{0}^{-1} V^{T} u \\
 \tag{E-21}\\
C=-\left(u^{T} V W_{0}^{-1}\right) W_{0}\left(W_{0}^{-1} V^{T} u\right)=u^{T} V W_{0}^{-1} V^{T} u \tag{E-22}
\end{gather*}
$$

Then I_{m} becomes

$$
\begin{equation*}
I_{m}=e^{-\frac{1}{2}\left(u^{T} U_{0} u+C\right)} \int \ldots \int \exp \left\{-\frac{1}{2}(w-\hat{w})^{T} W_{0}(w-\hat{w})\right\} d w_{1} \ldots d w_{r} \tag{E-23}
\end{equation*}
$$

But by (E-9) this integral is

$$
\begin{equation*}
\frac{(2 \pi)^{r / 2}}{\sqrt{\operatorname{det}\left(W_{0}\right)}} \tag{E-24}
\end{equation*}
$$

and from (E-18)

$$
\begin{equation*}
u^{T} U_{0} u+C=u^{T}\left[U_{0}-V W_{0}^{-1} V^{T}\right] u . \tag{E-25}
\end{equation*}
$$

The general partial Gaussian integral is therefore

$$
\begin{equation*}
I_{m}=\int \ldots \int \exp \left[-\frac{1}{2} q^{T} M q\right] d q_{m+1} \ldots d q_{n}=\frac{(2 \pi)^{\frac{n-m}{2}}}{\sqrt{\operatorname{det}\left(W_{0}\right)}} \exp \left\{-\frac{1}{2} u^{T} U u\right\} \tag{E-26}
\end{equation*}
$$

where

$$
\begin{equation*}
U \equiv U_{0}-V W_{0}^{-1} V^{T} \tag{E-27}
\end{equation*}
$$

is a "renormalized" version of the first $(m \times m)$ block of the original matrix M.
This result has a simple intuitive meaning in application to probability theory. The original $(n \times 1)$ vector q is composed of an $(m \times 1)$ vector u of "interesting" quantities that we wish to estimate, and an ($r \times 1$) vector w of "uninteresting" quantities or "nuisance parameters" that we want to eliminate. Then U_{0} represents the inverse covariance matrix in the subspace of the interesting quantities, W_{0} is the corresponding matrix in the "uninteresting" subspace, and V represents an "interaction", or correlation, between them.

It is clear from ($\mathrm{E}-27$) that if $V=0$, then $U=U_{0}$, and the $p d f$'s for u and w are independent. Our estimates of u are then the same whether or not we integrate w out of the problem. But if $V \neq 0$, then the renormalized matrix U contains effects of the nuisance parameters. Two components, u_{1} and u_{2}, that were uncorrelated in the original M^{-1} may become correlated in U^{-1} due to their common interactions (correlations) with the nuisance parameters w.
Inversion of a Block Form matrix. The matrix U has another simple meaning, which we see when we try to invert the full matrix M. Given an $(n \times n)$ matrix in block form

$$
M=\left(\begin{array}{cc}
U_{0} & V \tag{E-28}\\
X & W_{0}
\end{array}\right)
$$

where U_{0} is an $m \times m$ submatrix, and W_{0} is $(r \times r)$ with $m+r=n$, try to write M^{-1} in the same block form:

$$
M^{-1}=\left(\begin{array}{ll}
A & B \tag{E-29}\\
C & D
\end{array}\right)
$$

Writing out the equation $M M^{-1}=1$ in full, we have four relations of the form $U_{0} A+V C=$ $1, U_{0} B+V D=0$, etc. If U_{0} and W_{0} are nonsingular, there is a unique solution for A, B, C, D with the result

$$
M^{-1}=\left(\begin{array}{cc}
U^{-1} & -U_{0}^{-1} V W^{-1} \tag{E-30}\\
-W_{0}^{-1} X U^{-1} & W^{-1}
\end{array}\right)
$$

where

$$
\begin{align*}
U & \equiv U_{0}-V W_{0}^{-1} X \tag{E-31}\\
W & \equiv W_{0}-X U_{0}^{-1} V \tag{E-32}
\end{align*}
$$

are "renormalized" forms of the diagonal blocks. Conversely, (E-30) can be verified by direct substitution into $M M^{-1}=1$ or $M^{-1} M=1$. If M is symmetric as it was above, then $X=V^{T}$.

Another useful and nonobvious relation is found by integrating u out of ($\mathrm{E}-26$). On the one hand we have from (E-9),

$$
\begin{equation*}
\int \cdots \int \exp \left\{-\frac{1}{2} u^{T} U u\right\} d u_{1} \cdots d u_{m}=\frac{(2 \pi)^{m / 2}}{\sqrt{\operatorname{det}(U)}} \tag{E-33}
\end{equation*}
$$

but on the other hand, if we integrate $\left\{u_{1} \cdots u_{m}\right\}$ out of ($\mathrm{E}-26$), the final result must be the same as if we had integrated all the $\left\{q_{1} \cdots q_{n}\right\}$ out of (E-9) directly: so (E-9), (E-26), (E-33) yield

$$
\begin{equation*}
\operatorname{det}(M)=\operatorname{det}(U) \operatorname{det}\left(W_{0}\right) \tag{E-34}
\end{equation*}
$$

Therefore we can eliminate W_{0} and write the general partial Gaussian integral as

$$
\begin{equation*}
\int \cdots \int \exp \left[-\frac{1}{2} q^{T} M q\right] d q_{m+1} \cdots d q_{n}=\left[\frac{(2 \pi)^{n / 2}}{\operatorname{det}(M)}\right]\left[\frac{\operatorname{det}(U)}{(2 \pi)^{m / 2}}\right] \exp \left\{-\frac{1}{2} u^{T} U u\right\} \tag{E-35}
\end{equation*}
$$

