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APPENDIX E

MULTIVARIATE GAUSSIAN INTEGRALS

Starting from the formula ∫ ∞

−∞
e−x2

dx =
√

π (E–1)

it follows that

∫
. . .

∫ ∞

−∞
dx1 . . . dxn exp

{
−1

2

n∑
i=1

aix
2
i

}
=

(2π)n/2

√
a1a2 . . . an

, ai > 0 . (E–2)

Now carry out a real nonsingular linear transformation:

xi =
n∑

j=1

Bij qj , 1 ≤ i ≤ n , (E–3)

where det(B) 6= 0. Then, going into matrix notation,∑
ai x2

i = qT BT ABq = qT Mq (E–4)
where

Aij ≡ ai δij (E–5)

is a positive definite diagonal matrix. The volume element transforms according to the Jacobian
rule

dx1 . . . dxn = |det(B)| dq1 . . . dqn (E–6)
and

det(M) = det(BT AB) = [det(B)]2 det(A). (E–7)

The matrix M is by definition real, symmetric, and positive definite; and by proper choice of A, B
any such matrix may be generated in this way. The integral (E–2) may then be written as∫

. . .

∫
exp

{
−1

2
qT Mq

}
|det(B)| dq1 . . . dqn (E–8)

and so the general multivariate Gaussian integral is

I =
∫

. . .

∫
exp[−1

2
qT Mq] dq1 . . . dqn =

(2π)n/2√
det(M)

. (E–9)

Partial Gaussian Integrals. Suppose we don’t want to integrate over all the {q1 . . . qn}, but only
the last r = n−m of them;

Im ≡
∫

. . .

∫
exp

{
−1

2
qT Mq

}
dqm+1 . . . dqn (E–10)
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to do this, break M down into submatrices

M =
(

U0 V

V T W0

)
(E–11)

and likewise separate the vector q in the same way:

q =
(

u
w

)
. (E–12)

by writing {q1 = u1, . . . , qm = um} and {qm+1 = w1, . . . , qn = wr}. Then

Mq =
(

U0 V

V T W0

) (
u

w

)
(E–13)

and

qT Mq = uT U0u + uT V w + wT V T u + wT W0w (E–14)
so that Im becomes

Im = exp
(
−1

2
uT U0u

) ∫
. . .

∫
exp

{
−1

2
[wT W0w + uT V w + wT V T u]

}
dw1 . . . dwr (E–15)

To prepare to integrate out w, first complete the square on w by writing the exponent as

[ ] = (w − ŵ)T W0 (w − ŵ) + C (E–16)
and equate terms in (E–14) and (E–16) to find ŵ and C:

wT Ww + uT V w + wT V T u = wT W0w − ŵT W0w − wT W0ŵ + ŵT W0ŵ + C (E–17)

This requires (since it must be an identity in w):

uT V = −ŵT W0 (E–18)

V T u = −W0ŵ (E–19)

ŵT W0w + C = 0 (E–20)
or,

ŵ = −W−1
0 V T u (E–21)

C = −(uT V W−1
0 ) W0 (W−1

0 V T u) = uT V W−1
0 V T u (E–22)

Then Im becomes

Im = e−
1
2 (uT U0u+C)

∫
. . .

∫
exp

{
−1

2
(w − ŵ)T W0(w − ŵ)

}
dw1 . . . dwr . (E–23)

But by (E–9) this integral is
(2π)r/2√
det(W0)

(E–24)

and from (E–18)

uT U0u + C = uT [U0 − V W−1
0 V T ]u . (E–25)

The general partial Gaussian integral is therefore
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Im =
∫

. . .

∫
exp[−1

2
qT Mq] dqm+1 . . . dqn =

(2π)
n−m

2√
det(W0)

exp
{
−1

2
uT Uu

}
(E–26)

where

U ≡ U0 − V W−1
0 V T (E–27)

is a “renormalized” version of the first (m×m) block of the original matrix M .
This result has a simple intuitive meaning in application to probability theory. The original

(n × 1) vector q is composed of an (m × 1) vector u of “interesting” quantities that we wish to
estimate, and an (r × 1) vector w of “uninteresting” quantities or “nuisance parameters” that
we want to eliminate. Then U0 represents the inverse covariance matrix in the subspace of the
interesting quantities, W0 is the corresponding matrix in the “uninteresting” subspace, and V
represents an “interaction”, or correlation, between them.

It is clear from (E–27) that if V = 0, then U = U0, and the pdf ’s for u and w are independent.
Our estimates of u are then the same whether or not we integrate w out of the problem. But if V 6= 0,
then the renormalized matrix U contains effects of the nuisance parameters. Two components, u1

and u2, that were uncorrelated in the original M−1 may become correlated in U−1 due to their
common interactions (correlations) with the nuisance parameters w.

Inversion of a Block Form matrix. The matrix U has another simple meaning, which we see
when we try to invert the full matrix M . Given an (n× n) matrix in block form

M =
(

U0 V
X W0

)
(E–28)

where U0 is an m×m submatrix, and W0 is (r× r) with m + r = n, try to write M−1 in the same
block form:

M−1 =
(

A B
C D

)
(E–29)

Writing out the equation MM−1 = 1 in full, we have four relations of the form U0A + V C =
1, U0B + V D = 0, etc. If U0 and W0 are nonsingular, there is a unique solution for A, B, C, D
with the result

M−1 =
(

U−1 −U−1
0 V W−1

−W−1
0 XU−1 W−1

)
(E–30)

where

U ≡ U0 − V W−1
0 X (E–31)

W ≡ W0 −XU−1
0 V (E–32)

are “renormalized” forms of the diagonal blocks. Conversely, (E–30) can be verified by direct
substitution into MM−1 = 1 or M−1M = 1. If M is symmetric as it was above, then X = V T .

Another useful and nonobvious relation is found by integrating u out of (E–26). On the one
hand we have from (E–9),∫

· · ·
∫

exp
{
−1

2
uT U u

}
du1 · · · dum =

(2π)m/2√
det(U)

((E–33)

but on the other hand, if we integrate {u1 · · ·um} out of (E–26), the final result must be the same
as if we had integrated all the {q1 · · · qn} out of (E–9) directly: so (E–9), (E–26), (E–33) yield
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det(M) = det(U) det(W0) (E–34)

Therefore we can eliminate W0 and write the general partial Gaussian integral as∫
· · ·

∫
exp[−1

2
qT M q] dqm+1 · · · dqn =

[
(2π)n/2

det(M)

] [
det(U)
(2π)m/2

]
exp

{
−1

2
uT U u

}
(E–35)


