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APPENDIX C

CONVOLUTIONS AND CUMULANTS

First we note some general mathematical facts which have nothing to do with probability theory.
Given a set of real functions f1(x), f2(x), · · · fn(x) defined on the real line and not necessarily non-
negative, suppose that their integrals (zero’th moments) and their first, second, and third moments
exist:

Zi ≡
∫ ∞

−∞
fi(x) dx < ∞ ,

Fi ≡
∫ ∞

−∞
x fi(x) dx < ∞

Si ≡
∫ ∞

−∞
x2 fi(x) dx < ∞ ,

Ti ≡
∫ ∞

−∞
x3 fi(x) dx < ∞

(C–1)

The convolution of f1 and f2 is defined by

h(x) ≡
∫ ∞

−∞
f1(y) f2(x− y) dy (C–2)

or in condensed notation, h = f1 ∗f2. Convolution is associative: (f1 ∗f2)∗f3 = f1 ∗ (f2 ∗f3), so we
can write a multiple convolution as (h = f1 ∗ f2 ∗ f3 ∗ · · · ∗ fn) without ambiguity. What happens
to the moments under this operation? The zero’th moment of h(x) is

Zh =
∫ ∞

−∞
dx

∫ ∞

−∞
dyf1(y) f2(x− y) =

∫
dy f1(y)Z2 = Z1Z2 (C–3)

Therefore, if Zi 6= 0 we can multiply fi(x) by some constant factor which makes Zi = 1, and this
property will be preserved under convolution. In the following we assume that this has been done
for all i. Then the first moment of the convolution is

Fh =
∫ ∞

−∞
dx

∫ ∞

−∞
dyf1(y) x f2(x− y) =

∫
dy f1(y)

∫ ∞

−∞
dq(y + q)f2(q)

=
∫ ∞

−∞
dyf1(y) [yZ2 + F2] = F1Z2 + Z1F2 (C–4)

so the first moments are additive under convolution:

Fh = F1 + F2 (C–5)
For the second moment, we have by a similar argument

Sh =
∫

dyf1(y)
∫

dq(y2 + 2yq + q2)f2(q) = S1Z2 + 2F1F2 + Z1S2 (C–6)
or,

Sh = S1 + 2F1 F2 + S2 (C–7)
Subtracting the square of (C–5), the cross product term cancels out and we see that there is another
quantity additive under convolution:

[Sh − (Fh)2] = [S1 − (F1)2] + [S2 − (F2)2] (C–8)
Proceeding to the third moment, we find

Th = T1Z2 + 3S1F2 + 3F1S2 + Z1T2 (C–9)



C–2 C–2

and after some algebra [subtracting off functions of (C–5) and (C–7)] we can confirm that there is
a third quantity, namely

Th − 3 Sh Fh + 2 (Fh)3 (C–10)
that is additive under convolution.

This generalizes at once to any number of such functions: let h(x) ≡ f1 ∗ f2 ∗ f3 ∗ · · · ∗ fn.
Then we have found the additive quantities

Fh =
n∑

i=1

Fi

Sh − F 2
h =

n∑
i=1

(Si − F 2
i )

Th − 3ShFh + 2F 3
h =

n∑
i=1

(Ti − 3SiFi + 2F 3
i )

(C–11)

These quantities, which “accumulate” additively under convolution, are called the cumulants; we
have developed them in this way to emphasize that the notion has nothing, fundamentally, to do
with probability.

At this point we define the n’th cumulant as the n’th moment, with ‘correction terms’ from
lower moments, so chosen as to make the result additive under convolution. Then two questions
call out for solution: (1) Do such correction terms always exist?; and (2) If so, how do we find a
general algorithm to construct them?

To answer them we need a more powerful mathematical method. Introduce the fourier trans-
form of fi(x):

Fi(α) ≡
∫ ∞

−∞
fi(x)eiαx dx fi(x) =

1
2π

∫ ∞

−∞
Fi(α)e−iαx dα (C–12)

Under convolution it behaves very simply:

H(α) =
∫ ∞

−∞
h(x)eiαx dx =

∫
dyf1(y)

∫
dxeiαxf2(x− y)

=
∫

dyf1(y)
∫

dqeiα(y+q)f2(q)

= F1(α) F2(α)

(C–13)

In other words, log F (α) is additive under convolutions. This function has some remarkable proper-
ties in connection with the notion of the “Cepstrum” discussed later. For now, examine the power
series expansions of F (α) and log F (α). The first is

F (α) = M0 + M1(iα) + M2
(iα)2

2!
+ M3

(iα)3

3!
+ · · · (C–14)

with the coefficients

Mn =
1
in

dnF (α)
dαn

]
α=0

=
∫ ∞

−∞
xnf(x)dx (C–15)

which are just the n’th moments of f(x); if f(x) has moments up to order N , then F (α) is
differentiable N times at the origin. There is a similar expansion for log F (α):
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log F (α) = C0 + C1(iα) + C2
(iα)2

2!
+ C3

(iα)3

3!
+ · · · (C–16)

Evidently, all its coefficients

Cn =
1
in

dn

dαn
log F (α)

]
α=0

(C–17)

are additive under convolution, and are therefore cumulants. The first few are

C0 = log F (0) = log
∫

f(x)dx = log Z (C–18)

C1 =
1
i

∫
ixf(x)dx∫
f(x)dx

=
F

Z
(C–19)

C2 =
d2

d(iα)2
log F (α) =

d

d(iα)

∫
xf(x)eiαx∫

f(x)eiαx dx
=

∫
f

∫
x2f − (

∫
xf)2

(
∫

f)2

or,

C2 =
S

Z
−

(
F

Z

)2

(C–20)

which we recognize as just the cumulants found directly above; likewise, after some tedious calcu-
lation C3 and C4 prove to be equal to the third and fourth cumulants (C–10). Have we then found
in (C–17) all the cumulants of a function, or are there still more that cannot be found in this way?
We would argue that if all the Ci exist (i.e. f(x) has moments of all orders, so F (α) is an entire
function) then the Ci uniquely determine F (α) and therefore f(x), so they must include all the
algebraically independent cumulants; any others must be linear functions of the Ci. But if f(x)
does not have moments of all orders, the answer is not obvious, and further investigation is needed.

Relation of Cumulants and Moments

While adhering to our convention Z = 1, let us go to a more general notation for the n’th moment
of a function:

Mn ≡
∫ ∞

−∞
xn f(x) dx =

dn

d(iα)n

∫
f(x) eiαxdx

]
α=o

= i−n F (n)(0), n = 0, 1, 2, . . . (C–21)

It is often convenient to use also the notation

Mn = xn (C–22)
indicating an average of xn with respect to the function f(x). We stress that these are not in
general probability averages; we are indicating some general algebraic relations in which f(x) need
not be nonnegative. For probability averages we always reserve the notation 〈x〉 or E(x).

If a function f(x) has moments of all orders, then its fourier transform has a power series
expansion

F (α) =
∞∑

n=0

Mn (iα)n (C–23)

Evidently, the first cumulant is the same as the first moment:

C1 = M1 = x (C–24)
while for the second cumulant we have C2 = M2 −M2

1 ; but this is
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C2 =
∫

[x−M1]2 f(x) dx = (x− x)2 = x2 − x2 , (C–25)

the second moment of x about its mean value, called the second central moment of f(x). Likewise,
the third central moment is∫

(x− x)3 f(x) dx =
∫

[x3 − 3xx2 + 3x2x− x3] f(x) dx (C–26)

but this is just the third cumulant (C–11):

C3 = M3 − 3M1M2 + 2M3
1 (C–27)

and at this point we might conjecture that all the cumulants are just the corresponding central
moments. However, this turns out not to be the case: we find that the fourth central moment is

(x− x)4 = M4 − 4M3M1 + 6M2M
2
1 − 3M4

1 (C–28)

but the fourth cumulant is

C4 = M4 − 4M3M1 − 3M2
2 + 12M2M

2
1 − 6M4

1 . (C–29)

So they are related by

(x− x)4 = C4 + 3C2
2 . (C–30)

Thus the fourth central moment is not a cumulant; it is not a linear function of cumulants. However,
we have found it true that, for n = 1, 2, 3, 4 the moments up to order n and the cumulants up to
order n uniquely determine each other; we leave it for the reader to see, from examination of the
above relations, whether this is or is not true for all n.

If our functions f(x) are probability densities, many useful approximations are written most
efficiently in terms of the first few terms of a cumulant expansion.

Examples

What are the cumulants of a gaussian distribution? Let

f(x) =
1√

2πσ2
exp

(
(x− µ)2

2σ2

)
(C–31)

Then we find the fourier transform

F (α) = exp(iαµ− α2σ2/2) (C–32)

so that

log F (α) = iαµ− α2σ2/2 (C–33)

and so

C0 = 0, C1 = α, C2 = σ2 (C–34)

and all higher Cn are zero. A gaussian distribution is characterized by the fact that is has only two
nontrivial cumulants, the mean and variance.


