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Abstract. The geometric theory of ignorance [1] suggests new critietianodel selection. One
example is to choose model minimizing,

N R d N R
CIC=— 3 109P(x) + 51095, 100V + Fiooar 1)

where(x, ...,Xn) is @a sample oN iid observationsp € M is the mled = dim(M) is the dimension
of the modelM, V = Vol(M) is its information volume ancR = Ricci(M) is the Ricci scalar
evaluated at the mle. | study the performance of CIC for tloblem of segmentation of bit streams
defined as follows: Findh from N iid samples of a complete dag afbits. The CIC criterion
outperforms AIC and BIC by orders of magnitude when 3 and it is just better for the cases
n=23.
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INTRODUCTION

Consider the following decision problem: Given a finite seaee of bitsx = b1by. .. by
choose onéM among competing statistical models (i.e. explanationxfdi;, Mo, . ...
For exampleV; may explainx asN = k/ j independent chunks gfbits generated by a
graphical model of binary variables with a given structure but unspecified patars.
We allow modeldM; to be of different dimensions for both the data and the patame
spaces for different values gf This is a standard decision problem requiring a loss
function and a prior for its solution. The CIC formula definedthe abstract is an
approximation to the bayes rule for 01-loss and uniformrgri®y “uniform priors”
we mean that the bits are generated by first choosingniformly at random among
the availableM;’s, followed by a random choice of a probability distributip € M and
finally producingx = x1x2...xy @s a random sample of sikefrom p.

The first three terms of CIC are easy to obtain. Under 01-los$ayes action is the
mode of the posterior distribution and we only need to seéwchthe modelM with
highest posterior probability(M|x). By bayes theorem,

PMM) = g P00
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wheredV is the information volume element M andV =Vol (M) is the total volume of
M. Taking logs, noticing thatP(M) /P(x)) 0 1 and using a parameterizatith— Q C
RY we obtain,

logP(M|x1, ..., Xn) = Iog/ eNNO) gv(6) —logV +-C
Q

where in thed parameterization the volume elemelwt= /detl (6) d6 and the average
log likelihood Ly = & SN ;logp(x|6). 1(0) is the Fisher information matrix a.
ExpandinglLy about the mlef, noticing thatLy(8) = 0 and that by the LLN (Law
of Large Numbers)-00Ly () — 1(8) we can write,

N

N Ln(6) = N Ln(6) 5 (60— 6)T1(8)(6—6)+0o(N|6—6?

Thus, the bayes action (&s— ) is the model that maximizes

A d/2
NLn(6) + log (Zﬁn) —logV

where the second term is obtained by noticing that for Ia\gdy the mean value
theorem for integrals and the formulas ¥ and the normalizing constant ofdadim
gaussian,

The first three terms ofIC are then just a simple consequence of the large sample
properties of mle’s. The last term involving the Ricci scdRaat the mle was obtained
semi-empirically by simulation guided by the more rigoramsilysis in [1].

TESTING CIC

To test the performance of CIC as a criterion for model selactve compared it
with AIC (the “An” Information Criterion of Akaike [2]) and wth BIC (the Bayesian
Information Criterion of Schwarz [3]). All three criteri@arch, among a list of possible
models for the data, for the one minimizing the AIC, BIC or Gdgpressions defined

by,

AIC = —NLn(6)+d (1)
BIC = —N LN(é)JrglogN (2)
~d N R
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A Note About the ABC ICs

AlC

Initially, Akaike justified AIC by maximum entropy. He askdéithere are competing
models with a, possibly different, number of free parangteiow should the sample
xN be used to choose one of them?. He reasoned: If we knew theistridutiont then
we could take the model that maximizes the entropy relatithist. Translation: solve
argminy | (t : M) wherel (t : M) is the Kullback distance fromto M. Let p,, € M be the
|-projection oft ontoM, i.e.l(t: M) =1(t: p,). Thus, AIC attempts to find,

My = arg n|\1/|inl(t: Py) = argrpﬂin—/t(x) logp,, (X) dx
= argrpﬂin—Etlog Py (X)

The problem is that and p,, are unknown and need to be estimated from the dfata
By the LLN and the consistency of the mle (ig—"p,,) we have,

=z

—E log p, (X) = —E log p(X) ~ —= 5 B(X)

Zl =

but this naive mle estimate is biased for fifielt could then be argued that after col-
lecting the data, it should be the term in the middle;E; logp, the one quantifying
the loss and not the originakE: log p,,. The asymptotic bias (with respect-tde; log p)
can be obtained by the following (tricky) considerationg.tBe (generalized) Pythago-
ras theorem (see [4]) we have:

I(t:pM>+|<pM:ﬁ>:l(t:ﬁ)

and rearranging terms we get,

p(X) A
E: lo = —| :
i gpM<X) (Pu: D)
Thus,
50X i
2NE; log PX) ~ —||VN(Bo— 0)||5 ~ —x3

Py (X)

where 6 is the parameter associated oy and we have used the consistency and
asymptotic normality of the mle (i.e§ — 6y and v'N(8 — 6g) — N(0,171(8p)), to
arrive at the asymptotic Chi-square wildegrees of freedom. With this we can write:

lim E {—ilog P(X)+N E; log ﬁ(X)} =

N—oo
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. f) p(X) d d
lim E lo +NE lo =————=—d.
A { 2,95, %) gpM<x>} 2 2

Where we have used the fact that twice the sum involving tkaliiood ratio (line
above) converges (in law) to a Chi-square wdtlilegrees of freedom. Hence, AIC is
just the naive mle corrected to be asymptotically unbiasesheestimator of-E; logp.
These arguments try to justify the definition of AIC in (1).\Netheless, | don’t find
AIC defensible as a general criterion for model selection.

BIC and CIC

The BIC of Schwarz can be obtained by following the derivatior the first three
terms of CIC used in the introduction of this paper. Howewestead of using the
uniform prior onM use a fix arbitrary positive prior dd and neglect the terms of order
N® =1 to arrive at (2). The problem with BIC is that the neglectemirts, involving the
volume and the curvature ™ can become the leading terms. In fact that is the case for
the important case of multinomial models studied in thisgoap

The Simulations

We played repeatedly (100 repetitions per sample sizexamelard game of generat-
ing a sample of sizBl from a chosen true distribution. Then, acting as if we di&ntbw
this true distribution, we let AIC, BIC, and CIC, guess a nmdde the simulated data
and counted the proportion of correct guesses for eachionte

The underlying true distributions were chosen from the{8&f, M3, ..., Mg} where
M is the complete dag aof binary variables. The observed sequence of bits was created
by concatenating a random sample of skkdrom M, with random values for the
parameters.

The dimensiord, volumeV, and scalar curvatur for the complete dai, were
computed in [5] as,

= 271 (4)
V = 7(kﬁk1)!’ wherek = 2"1 (5)
R = 7d(d-1) (6)

The simulations, are summarized in figure (1). The graphsghat CIC is orders of
magnitude better than its two competitors (AIC and BIC) astaron for determining
the size of complete bitnets. When= 9 the graph seems to show only the CIC curve.
The two other curves (for AIC and BIC) are in fact there but meger different from
0!. For example with 100 observations from complete bitét8 bits, CIC chose the
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FIGURE 1. Proportion of Successes vs. Sample size. AIC(dot), BIG{d&dC(solid)

correct sizen= 9, 100 times out of 100 but AIC and BIC failed all 100 times. W'lee
sample size was increased to 200, CIC chose the carrec® all 100 times, but AIC
and BIC still failed all 100 trials. We should emphasize thath sample was chosen
with random values for the parameters. Thus, the superiofiCIC over AIC and BIC
appears to be independent of the actual values of the pasesyaétthe complete bitnet.
This is compatible with the homogeneous (constant cureatgeometry of complete
bitnets.

The results of these simulations also agree, reinforcevaliahte the findings by Eitel
Lauriain [6, 7]. Lauria’s Monte Carlo experiments show dasiwely that by adding the
approximation for logv (see [5]) to the BIC formula (2) (i.e. essentially using thstfi
three terms of CIC) outperforms plain BIC in the much moré&dift task of identifying
the full structure of a bitnet of (fixed) bits and the performance increases with the
maximum number of parents in the true bitnet.
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FIGURE 2. Segmentation of concatenated files by CIC

SEGMENTING REAL DATA

To demonstrate the sensitivity of CIC for recognizing mattednges along a bitstream,
we created a long sequence of bits by concatenating pieddebf different types.
The datax was,

x = 10k(.ai f ) + 20k(.j pg) + 5K(.txt) + 5k(.g2)

l.e., ten thousand bytes from a sound file (.aiff type), fokd by 20k bytes from an
image file (.jpg type), followed by 5k from an ascii file (.tyiee), followed by 5k from
the same ascii file by compressed with gnuzip (.gz type).reig2) shows the value of
CIC for a sliding window of 640 bits traversing the boundatetween files of different
types. The horizontal lines indicate the average values©ff@ the different segments:
end of sound, sky, ground, beginning of text, end of text, passed data.

FOR MODEL SELECTION IGNORANCE ISBLISS

Take the blue pill, the story ends. You wake up in your bed and believe whatever
you want to believe. You take the red pill, you stay in Wonderland, and | show you how
deep the rabbit hole goes.... Remember, all I’m offering is the truth, nothing more....
Morpheus (holding out two pills): The Matrix.
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Let M be a manifold of homogeneous theories, Meis a standard regular, para-
metric statistical modeM is riemannian with the induced metric from the Hellinger
distance (i.e. with Fisher information as the metric) aneréifiore carries a notion of
volume elementlV = /detl (6) dB8. Consider the following two ways for generating
(Data, Theory):

1) The Informative Prior Way Pick Theoryp € M with prior probability scalar den-
sity 1i(p). Then, observe Data® = x1xo...Xq, i.e. with probability p(x®) =
P(X1)P(X2) .- . P(Xa)-

Here (Data, Theory) ardependent: Prob(x?, p) = p(x?) m(p) = 1.

2) Thelgnorant Prior Way Pick Theoryp € M uniformly at random, i.e. with constant
scalar density (assumd of finite volume). Then, observe Datd = X1Xy...Xq
from thetrue distribution, i.e. with probability (x9) = t(xq)t(x2) ...t (Xa)-

Here (Data, Theory) ar@dependent: Prob(x?, p) =t(x%) w(p).

Ignorance is self-similar

Notice that in the ignorant way above, data is assumed to doone the true(t)
distribution. If you happen to know thtghen you have complete knowledge; That's all
there is to know about the distribution of the data and yoelzavived at the true theory
of everything. Enjoy!

If, on the other hand, all you know abouts the manifoldM of guesses, then the
ignorant generative model (2, above) preserves that prior statemflatlge a posteriori.
The prior state of indifference (uniform(p)) about the elements &l does not change
after observing the datef', for all o > 0. The posterior is the same as the prior since
Data and Theory are independent.

LIPREM: The Red Pill

The notion of ignorance sketched above, producesas LIPREM: Least Informative
Prior RElative to M. Where,

m = arg rr)Tin Dist(15: 2)

where “Dist” is any statistically meaningful measure of @gion between the joint

distribution of (Data,Theory) specified by;Jand by the ignorant way 2 above. The
class of all the statistically meaningful notions of sepiarabetween unnormalized

probability distributions can be shown to be generated bydtinformation deviations

|5 (see [1] and the references there), wheére [0, 1]. If we let,

(M) =15(Lr 2 2) @
to be the total information i then,

M* = arg n'QAaxI(;(ln* 2 2) (8)
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is the minimax ignorant (or maximin informative) model. TG&C is just an estimate
of &* for 8 = 0,a = N,t = p (the mle) that keeps the first terms of an asymptotic
expansion ino = N (see [1]). LIPREM and its extensions produce all the siatiy
meaningful actions for model selection. The standard marnposterior probability
model is just one special case.

CONCLUSION: MORE GEOMETRY

It is natural to decompose AIC, BIC and CIC as the sum of twongerThe term
providing the fit of the data to the model (common to all the&ncriteria) plus the rest.
That rest is obviously a penalty on the complexity of the nhoderetrospect, it is to be
expected that the complexity of a modiélshould involve some (or all?) of its geometric
and topological invariants like: dimension, volume andveture, as CIC does. But we
need to keep in mind that CIC, like AIC and BIC, is only an apjm@ation. It would
be much better to be able to show that useful models sprimg fr@ optimization of a
global topological quantity, like the total (or mean?) scalurvature oM. In fact, we
already know that that is precisely the case in classicasipByl would like to show that
that is also the case for the whole of inference.
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