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Abstract. The geometric theory of ignorance [1] suggests new criteriafor model selection. One
example is to choose modelM minimizing,

CIC = −
N

∑
i=1

log p̂(xi)+
d
2

log
N
2π

+ logV +
πR

N log(d +1)

where(x1, . . . ,xN) is a sample ofN iid observations, ˆp ∈ M is the mle,d = dim(M) is the dimension
of the modelM, V = Vol(M) is its information volume andR = Ricci(M) is the Ricci scalar
evaluated at the mle. I study the performance of CIC for the problem of segmentation of bit streams
defined as follows: Findn from N iid samples of a complete dag ofn bits. The CIC criterion
outperforms AIC and BIC by orders of magnitude whenn > 3 and it is just better for the cases
n = 2,3.
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INTRODUCTION

Consider the following decision problem: Given a finite sequence of bits,x = b1b2 . . .bk
choose oneM among competing statistical models (i.e. explanations forx) M1,M2, . . ..
For exampleM j may explainx asN = k/ j independent chunks ofj bits generated by a
graphical model ofj binary variables with a given structure but unspecified parameters.
We allow modelsM j to be of different dimensions for both the data and the parameter
spaces for different values ofj. This is a standard decision problem requiring a loss
function and a prior for its solution. The CIC formula definedin the abstract is an
approximation to the bayes rule for 01-loss and uniform priors. By “uniform priors”
we mean that the bits are generated by first choosingM uniformly at random among
the availableM j’s, followed by a random choice of a probability distribution p ∈ M and
finally producingx = x1x2 . . .xN as a random sample of sizeN from p.

The first three terms of CIC are easy to obtain. Under 01-loss the bayes action is the
mode of the posterior distribution and we only need to searchfor the modelM with
highest posterior probabilityP(M|x). By bayes theorem,

P(M|x) =
P(M)

P(x)

∫

M
p(x)

dV
V
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wheredV is the information volume element inM andV =Vol(M) is the total volume of
M. Taking logs, noticing that(P(M)/P(x)) ∝ 1 and using a parameterizationM ↔ Ω ⊂
Rd we obtain,

logP(M|x1, . . . ,xN) = log
∫

Ω
eNLN(θ ) dV (θ)− logV +C

where in theθ parameterization the volume elementdV =
√

detI(θ) dθ and the average
log likelihood LN = 1

N ∑N
i=1 logp(xi|θ). I(θ) is the Fisher information matrix atθ .

ExpandingLN about the mleθ̂ , noticing that∇LN(θ̂) = 0 and that by the LLN (Law
of Large Numbers)−∇∇LN(θ̂) → I(θ̂) we can write,

N LN(θ) = N LN(θ̂)− N
2

(θ − θ̂)T I(θ̂)(θ − θ̂)+o(N|θ − θ̂ |2)

Thus, the bayes action (asN → ∞) is the model that maximizes

NLN(θ̂)+ log

(

2π
N

)d/2

− logV

where the second term is obtained by noticing that for largeN, by the mean value
theorem for integrals and the formulas fordV and the normalizing constant of ad-dim
gaussian,

∫

e−
N
2 (θ−θ̂)T I(θ̂)(θ−θ̂ ) dV = |I(θ̂)|1/2

∣

∣

∣

∣

2π
N

I−1(θ̂)

∣

∣

∣

∣

1/2

The first three terms ofCIC are then just a simple consequence of the large sample
properties of mle’s. The last term involving the Ricci scalar R at the mle was obtained
semi-empirically by simulation guided by the more rigorousanalysis in [1].

TESTING CIC

To test the performance of CIC as a criterion for model selection we compared it
with AIC (the “An” Information Criterion of Akaike [2]) and with BIC (the Bayesian
Information Criterion of Schwarz [3]). All three criteria search, among a list of possible
models for the data, for the one minimizing the AIC, BIC or CICexpressions defined
by,

AIC = −N LN(θ̂)+d (1)

BIC = −N LN(θ̂)+
d
2

log N (2)

CIC = −N LN(θ̂)+
d
2

log
N
2π

+ logV +
πR

N log(d +1)
(3)
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A Note About the ABC ICs

AIC

Initially, Akaike justified AIC by maximum entropy. He asked: If there are competing
models with a, possibly different, number of free parameters; How should the sample
xN be used to choose one of them?. He reasoned: If we knew the truedistributiont then
we could take the model that maximizes the entropy relative to thist. Translation: solve
argminM I(t : M) whereI(t : M) is the Kullback distance fromt to M. Let pM ∈ M be the
I-projection oft ontoM, i.e. I(t : M) = I(t : pM). Thus, AIC attempts to find,

Ma = argmin
M

I(t : pM) = argmin
M

−
∫

t(x) logpM(x) dx

= argmin
M

−Et log pM(X)

The problem is thatt and pM are unknown and need to be estimated from the dataxN .
By the LLN and the consistency of the mle (i.e. ˆp → pM ) we have,

−Et log pM(X) ≈−Et log p̂(X) ≈− 1
N

N

∑
i=1

p̂(Xi)

but this naïve mle estimate is biased for finiteN. It could then be argued that after col-
lecting the dataxN , it should be the term in the middle,−Et log p̂, the one quantifying
the loss and not the original,−Et logpM . The asymptotic bias (with respect to−Et log p̂)
can be obtained by the following (tricky) considerations. By the (generalized) Pythago-
ras theorem (see [4]) we have:

I(t : pM)+ I(pM : p̂) = I(t : p̂)

and rearranging terms we get,

Et log
p̂(X)

pM(X)
= −I(pM : p̂)

Thus,

2NEt log
p̂(X)

pM(X)
≈−||

√
N(θ0− θ̂ )||20 ≈−χ2

d

where θ0 is the parameter associated topM and we have used the consistency and
asymptotic normality of the mle (i.e.,̂θ → θ0 and

√
N(θ̂ − θ0) → N(0, I−1(θ0)), to

arrive at the asymptotic Chi-square withd degrees of freedom. With this we can write:

lim
N→∞

E

{

−
N

∑
i=1

log p̂(Xi)+N Et log p̂(X)

}

=
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lim
N→∞

E

{

−
N

∑
i=1

log
p̂(Xi)

pM(Xi)
+N Et log

p̂(X)

pM(X)

}

= −d
2
− d

2
= −d.

Where we have used the fact that twice the sum involving the likelihood ratio (line
above) converges (in law) to a Chi-square withd degrees of freedom. Hence, AIC is
just the naïve mle corrected to be asymptotically unbiased as an estimator of−Et log p̂.
These arguments try to justify the definition of AIC in (1). Nevertheless, I don’t find
AIC defensible as a general criterion for model selection.

BIC and CIC

The BIC of Schwarz can be obtained by following the derivation for the first three
terms of CIC used in the introduction of this paper. However,instead of using the
uniform prior onM use a fix arbitrary positive prior onM and neglect the terms of order
N0 = 1 to arrive at (2). The problem with BIC is that the neglected terms, involving the
volume and the curvature ofM can become the leading terms. In fact that is the case for
the important case of multinomial models studied in this paper.

The Simulations

We played repeatedly (100 repetitions per sample size) the standard game of generat-
ing a sample of sizeN from a chosen true distribution. Then, acting as if we didn’tknow
this true distribution, we let AIC, BIC, and CIC, guess a model for the simulated data
and counted the proportion of correct guesses for each criterion.

The underlying true distributions were chosen from the set{M2,M3, . . . ,M9} where
Mn is the complete dag ofn binary variables. The observed sequence of bits was created
by concatenating a random sample of sizeN from Mn with random values for the
parameters.

The dimensiond, volumeV , and scalar curvatureR for the complete dagMn were
computed in [5] as,

d = 2n −1 (4)

V =
πk

(k−1)!
, wherek = 2n−1 (5)

R =
1
4

d(d−1). (6)

The simulations, are summarized in figure (1). The graphs show that CIC is orders of
magnitude better than its two competitors (AIC and BIC) as a criterion for determining
the size of complete bitnets. Whenn = 9 the graph seems to show only the CIC curve.
The two other curves (for AIC and BIC) are in fact there but arenever different from
0!. For example with 100 observations from complete bitnetsof 9 bits, CIC chose the
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n = 2 n = 3 n = 4

n = 5 n = 6
n = 7

n = 8
n = 9

FIGURE 1. Proportion of Successes vs. Sample size. AIC(dot), BIC(dash), CIC(solid)

correct sizen = 9, 100 times out of 100 but AIC and BIC failed all 100 times. When the
sample size was increased to 200, CIC chose the correctn = 9 all 100 times, but AIC
and BIC still failed all 100 trials. We should emphasize thateach sample was chosen
with random values for the parameters. Thus, the superiority of CIC over AIC and BIC
appears to be independent of the actual values of the parameters of the complete bitnet.
This is compatible with the homogeneous (constant curvature) geometry of complete
bitnets.

The results of these simulations also agree, reinforce, andvalidate the findings by Eitel
Lauría in [6, 7]. Lauría’s Monte Carlo experiments show conclusively that by adding the
approximation for logV (see [5]) to the BIC formula (2) (i.e. essentially using the first
three terms of CIC) outperforms plain BIC in the much more difficult task of identifying
the full structure of a bitnet ofn (fixed) bits and the performance increases with the
maximum number of parents in the true bitnet.
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The Iliad: BOOK I

Sing, O goddess, the anger of 
Achilles son of Peleus, that brought
countless ills upon the Achaeans. 
Many a brave soul did it send 
hurrying
down to Hades, and many a hero did 
it yield a prey to dogs and vultures,
for so were the counsels of Jove 
fulfilled from the day on which the son
of Atreus, king of men, and great 
Achilles, first fell out with one
another…………

+
+

+ 01100…0

.aiff .jpg
.txt

.gz

CIC

FIGURE 2. Segmentation of concatenated files by CIC

SEGMENTING REAL DATA

To demonstrate the sensitivity of CIC for recognizing modelchanges along a bitstream,
we created a long sequence of bits by concatenating pieces offiles of different types.
The datax was,

x = 10k(.ai f f )+20k(. jpg)+5k(.txt)+5k(.gz)

i.e., ten thousand bytes from a sound file (.aiff type), followed by 20k bytes from an
image file (.jpg type), followed by 5k from an ascii file (.txt type), followed by 5k from
the same ascii file by compressed with gnuzip (.gz type). Figure (2) shows the value of
CIC for a sliding window of 640 bits traversing the boundaries between files of different
types. The horizontal lines indicate the average values of CIC for the different segments:
end of sound, sky, ground, beginning of text, end of text, compressed data.

FOR MODEL SELECTION IGNORANCE IS BLISS

Take the blue pill, the story ends. You wake up in your bed and believe whatever
you want to believe. You take the red pill, you stay in Wonderland, and I show you how
deep the rabbit hole goes.... Remember, all I’m offering is the truth, nothing more....
Morpheus (holding out two pills): The Matrix.
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Let M be a manifold of homogeneous theories, i.e.M is a standard regular, para-
metric statistical model.M is riemannian with the induced metric from the Hellinger
distance (i.e. with Fisher information as the metric) and therefore carries a notion of
volume elementdV =

√

detI(θ) dθ . Consider the following two ways for generating
(Data,Theory):

1) The Informative Prior Way Pick Theoryp ∈ M with prior probability scalar den-
sity π(p). Then, observe Dataxα = x1x2 . . .xα , i.e. with probability p(xα) =
p(x1)p(x2) . . . p(xα).
Here (Data,Theory) aredependent: Prob(xα , p) = p(xα) π(p) ≡ 1π .

2) The Ignorant Prior Way Pick Theoryp∈M uniformly at random, i.e. with constant
scalar density (assumeM of finite volume). Then, observe Dataxα = x1x2 . . .xα
from thetrue distribution, i.e. with probabilityt(xα) = t(x1)t(x2) . . .t(xα).
Here (Data,Theory) areindependent: Prob(xα , p) = t(xα) ω(p).

Ignorance is self-similar

Notice that in the ignorant way above, data is assumed to comefrom the true(t)
distribution. If you happen to know thist then you have complete knowledge; That’s all
there is to know about the distribution of the data and you have arrived at the true theory
of everything. Enjoy!

If, on the other hand, all you know aboutt is the manifoldM of guesses, then the
ignorant generative model (2, above) preserves that prior state of knowledge a posteriori.
The prior state of indifference (uniformω(p)) about the elements ofM does not change
after observing the dataxα , for all α > 0. The posterior is the same as the prior since
Data and Theory are independent.

LIPREM: The Red Pill

The notion of ignorance sketched above, producesπ∗ as LIPREM: Least Informative
Prior RElative to M. Where,

π∗ = argmin
π

Dist(1π : 2)

where “Dist” is any statistically meaningful measure of separation between the joint
distribution of (Data,Theory) specified by 1π and by the ignorant way 2 above. The
class of all the statistically meaningful notions of separation between unnormalized
probability distributions can be shown to be generated by the δ -information deviations
Iδ (see [1] and the references there), whereδ ∈ [0,1]. If we let,

A
∗(M) = Iδ (1π∗ : 2) (7)

to be the total information inM then,

M∗ = argmax
M

Iδ (1π∗ : 2) (8)
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is the minimax ignorant (or maximin informative) model. TheCIC is just an estimate
of A ∗ for δ = 0,α = N, t = p̂ (the mle) that keeps the first terms of an asymptotic
expansion inα = N (see [1]). LIPREM and its extensions produce all the statistically
meaningful actions for model selection. The standard maximum posterior probability
model is just one special case.

CONCLUSION: MORE GEOMETRY

It is natural to decompose AIC, BIC and CIC as the sum of two terms. The term
providing the fit of the data to the model (common to all the three criteria) plus the rest.
That rest is obviously a penalty on the complexity of the model. In retrospect, it is to be
expected that the complexity of a modelM should involve some (or all?) of its geometric
and topological invariants like: dimension, volume and curvature, as CIC does. But we
need to keep in mind that CIC, like AIC and BIC, is only an approximation. It would
be much better to be able to show that useful models spring from the optimization of a
global topological quantity, like the total (or mean?) scalar curvature ofM. In fact, we
already know that that is precisely the case in classical physics. I would like to show that
that is also the case for the whole of inference.
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